

The Lancet One Health Commission: harnessing our interconnectedness for equitable, sustainable, and healthy socioecological systems

Andrea S Winkler*, Christina Marie Brux*, Hélène Carabin†, Carlos G das Neves†, Barbara Häslert†, Jakob Zinsstag†, Eric Maurice Fèvre‡, Anna Okello‡, Gabrielle Laing‡, Wendy Elizabeth Harrison‡, Anna K Pöntinen, Annalena Huber, Arne Ruckert, Barbara Natterson-Horowitz, Bernadette Abela, Cécile Aenishaenslin, David L Heymann, Ernst Kristian Rødland, Franck C J Berthe, Ilaria Capua, James Sejvar, Juan Lubroth, Jukka Corander, Jürgen May, Laura Franziska Roth, Lian Francesca Thomas, Lucille Blumberg, Maria Knight Lapinski, Matthew Stone, Melvin Katey Agbogbatey, Ning Xiao, Osama Ahmed Hassan, Osman Dar, Peter Daszak, Renzo R Guinto, Sera Senturk, Sundeep Sahay, Thelma Alafia Samuels, Yngvild Wasteson, John H Amuasi§

Executive summary

Industrialisation, urbanisation, and globalisation have substantially improved human life expectancy over the past century. In tandem, an expanding array of interlinked threats to humans, other animals, plants, and a myriad of other biotic and abiotic elements in our shared ecosystems has been generated. These threats include emerging and re-emerging infectious diseases, antimicrobial resistance (AMR), non-communicable diseases (NCDs), jeopardised food safety and security, freshwater scarcity, climate change, pollution, and biodiversity loss. These pressing health and sustainability challenges exceed the scope of any single discipline, government ministry, or societal sector, underscoring the need for interdisciplinary, transdisciplinary, and multisectoral collaboration, as well as for a socioecologically oriented systems perspective that appreciates the fundamental interconnections between humans, other animals, and the wider ecosystem.

When this Commission first convened in 2019, One Health was a highly visible, but also greatly evolving, concept and approach. Predominantly driven by the veterinary sector, the primary focus of One Health in early years had been on zoonotic diseases, but more recent years have seen an increasingly interdisciplinary and transdisciplinary expansion and diversification of the concept, a proliferation of initiatives, and growing concerns about fragmentation and insufficient conceptual clarity. There was a need to advance not only conceptual expansion, but also consensus, as well as aligned, interdisciplinary, transdisciplinary, and multisectoral efforts towards One Health operationalisation, implementation, and institutionalisation. We set out to address these needs and leverage One Health as a crucial and viable approach to achieving equitable, sustainable, and healthy socioecological systems—the vision of the *Lancet* One Health Commission. The zoonotic underpinnings of the COVID-19 pandemic and its wide-ranging effects across sectors necessitated a radical rethink of the role of One Health in pursuing sustainable development and substantially shaped the importance and trajectories of the Commission's work.

The Commission's methodology entailed convening a diverse, transnational, and interdisciplinary group of

experts, who conducted an informed synthesis and appraisal of the current state of knowledge and evidence regarding the need for and value of One Health, which resulted in the proposal of key avenues for One Health operationalisation, implementation, and institutionalisation. We build on new and evolving One Health advances, including the One Health Joint Plan of Action, launched by the One Health Quadripartite, and the definition of One Health, One Health principles, and theory of change put forth by the One Health High-Level Expert Panel (OHHLEP).

This Commission is guided by a One Health ethos comprising principles of holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability. The Commission also engages a socioecological systems perspective that sheds light on the crucial importance of the environment, including plants, soil, water, air, wildlife, biodiversity, and climate. In our approach, we have deliberately avoided boundaries between humans, other animals, and the environment. As reflected in the key messages, the evidence synthesis and appraisal was structured via sections dedicated to surveillance, infectious diseases, AMR, NCDs, health systems, and food systems.

The *Lancet* One Health Commission provides a cutting-edge appraisal of where One Health has come from, where it is now, and what a viable future should be. One Health was not mentioned in the 2030 Sustainable Development Agenda; however, the impact of the COVID-19 pandemic brought into acute focus the fundamental interconnections between humans, other animals, plants, and a myriad of other biotic and abiotic elements in the ecosystem, and, consequently, how healthy sustainable socioecological systems could be achieved via a One Health approach. The consensus around One Health that has been built by the One Health Quadripartite and OHHLEP, which has been reinforced by this Commission, is essential for addressing the threats to health posed by infectious diseases, AMR, NCDs, and planetary crises; harnessing data and artificial intelligence for disease surveillance and health-care delivery; forging equitable partnerships and inclusive collaborations; and generating necessary insight into socioecological interconnection. As such, One Health is a crucial catalyst in the pursuit of an equitable, sustainable,

Lancet 2025; 406: 501–70

Published Online

July 16, 2025

[https://doi.org/10.1016/S0140-6736\(25\)00627-0](https://doi.org/10.1016/S0140-6736(25)00627-0)

See **Comment** pages 424 and 426

*First authors

†Second authors and core writing team

‡Third authors and working group leads

§Senior author

Department of Neurology,
Technical University of Munich
University Hospital, and Center
for Global Health, School of
Medicine and Health, Technical
University of Munich, Munich,
Germany
(Prof A S Winkler MD PhD,
A Huber MSc, L F Roth MSc,
S Senturk MBChB MSc);

Department of Community
Medicine and Global Health,
Institute of Health and Society,
Faculty of Medicine, University
of Oslo, Oslo, Norway
(Prof A S Winkler); Department
of Global Health and Social
Medicine, Harvard Medical
School, Boston, MA, USA
(Prof A S Winkler); Sustainable
Health Unit, Faculty of
Medicine, University of Oslo,
Oslo, Norway (C M Brux MPhil);
Faculty of Veterinary Medicine
and School of Public Health,
University of Montreal,
Montreal, QC, Canada
(Prof H Carabin DVM PhD);

European Food Safety
Authority, Parma, Italy
(Prof C G das Neves DVM PhD);
Norwegian Veterinary
Institute, Oslo, Norway
(Prof C G das Neves);

Department of Pathobiology
and Population Sciences,
Veterinary Epidemiology,
Economics and Public Health
Group, The Royal Veterinary
College, Hatfield, UK
(Prof G das Neves DVM PhD);
Faculty of Veterinary Medicine
and School of Public Health,
University of Montreal,
Montreal, QC, Canada
(Prof H Carabin DVM PhD);
European Food Safety
Authority, Parma, Italy
(Prof C G das Neves DVM PhD);
Norwegian Veterinary
Institute, Oslo, Norway
(Prof C G das Neves);
Department of Pathobiology
and Population Sciences,
Veterinary Epidemiology,
Economics and Public Health
Group, The Royal Veterinary
College, Hatfield, UK

(Prof B Häsliger DVM PhD);
Network for EcoHealth and One Health, Aïlschwil, Switzerland (Prof B Häsliger, G Laing BVSc PhD); **Swiss Tropical and Public Health Institute and University of Basel, Basel, Switzerland** (Prof J Zinsstag DVM PhD); **Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK** (Prof E M Fèvre PhD); **International Livestock Research Institute, Nairobi, Kenya** (Prof E M Fèvre, L F Thomas DVM PhD); **Australian Centre for International Agricultural Research, Canberra, ACT, Australia** (A Okello PhD); **University of Edinburgh, Edinburgh, UK** (L F Thomas, A Okello); **Unlimit Health, London, UK** (G Laing, W E Harrison DVM PhD); **Department of Biostatistics, University of Oslo, Oslo, Norway** (A K Pöntinen DVM PhD, Prof J Corander PhD); **University of Ottawa, Ottawa, ON, Canada** (A Ruckert PhD); **Harvard Medical School, Boston, MA, USA** (Prof B Natterson-Horowitz MD PhD); **WHO, Geneva, Switzerland** (B Abela DVM MSc); **University of Montreal, Montreal, QC, Canada** (C Aenishaenslin DVM PhD); **London School of Hygiene & Tropical Medicine, London, UK** (Prof D L Heymann MD); **Norwegian Institute of Public Health and University of Oslo, Oslo, Norway** (E K Røedland MD PhD); **World Bank, Washington, DC, USA** (F C J Berthe PhD); **SAIS Europe, Johns Hopkins University, Bologna, Italy** (Prof I Capua DVM PhD); **University of Florida, Gainesville, FL, USA** (Prof I Capua); **University of Pittsburgh, Pittsburgh, PA, USA** (J Sejvar MD); **Lubroth One Health Consultancies, Riety, Italy** (J Lubroth DVM PhD); **Wellcome Sanger Institute, Parasites and Microbes, Hinxton, UK** (Prof J Corander); **Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany** (Prof J May MD PhD, J H Amuasi MBChB PhD, M K Agbogbeyi MBChB MPH); **Kumasi Center for Collaborative Research in Tropical Medicine, Kumasi, Ghana**

Key messages

Expanding the One Health concept

Since the concept first emerged in the early 2000s, One Health has been defined and engaged with in many different ways. For many years, it was driven by the veterinary sector and predominantly focused on concerns about zoonotic disease transmission at the human-animal interface. In the wake of the COVID-19 pandemic in particular, the concept has been expanding. In supporting this expansion, this Commission asserts that One Health is an interdisciplinary, transdisciplinary, and multisectoral approach to addressing pressing global health and sustainability challenges and promoting equitable, sustainable, and healthy socioecological systems. One Health, as conceived by this Commission, is grounded in an appreciation of the fundamental interconnectedness and health interdependencies among humans, other animals, plants, and a myriad of other biotic and abiotic elements in the wider ecosystem.

The socioecological systems perspective

Socioecological interconnection among humans, other animals, plants, and the wider environment is the foundation of One Health. The triple planetary crisis of climate change, biodiversity loss, and pollution poses serious threats to health and sustainability. Climate change mitigation, biodiversity conservation, and ecological restoration must be prioritised within the One Health approach.

Surveillance

More effective disease surveillance is needed, and can be achieved through an integrated One Health approach. However, the availability and quality of data can vary greatly across sectors and, even where data exist, key challenges linked to data sharing and integration must be addressed. Moreover, a One Health approach to surveillance provides unique opportunities to monitor not only threats, but also the preconditions for health and determinants of healthy and sustainable systems, thereby supporting resilient ecosystems and health-promoting environments.

Infectious diseases

A One Health approach to infectious diseases must address not only zoonotic diseases of pandemic potential, but also neglected tropical diseases and the effect of infectious animal diseases on the health of livestock, wildlife (terrestrial and aquatic animal, plant, and insect species), companion animals, food systems and nutrition, antimicrobial use, livelihoods, and economic development.

Antimicrobial resistance

The One Health approach to antimicrobial resistance must emphasise environmental drivers, which this Commission has found to differ across high-income countries and low-income and middle-income countries. This Commission also asserts a need to prioritise equitable access to effective antimicrobials globally, stewardship, community-centred approaches to national priority setting, and upscaling of investment in the

most effective interventions, such as improved infection prevention and control; water, sanitation, and hygiene; and vaccination programmes across both human and animal health systems.

Non-communicable diseases

Non-communicable diseases have traditionally received little attention within One Health research and practice, which this Commission seeks to change. A One Health approach to non-communicable diseases enables a systematic understanding and equitable approach to addressing the shared risk factors (eg, environmental pollutants, unhealthy diets, and climate change) and other determinants of health and wellbeing across species and throughout the socioecological system. Multisectoral, inclusive, and equitable collaboration for One Health governance, including joint agenda-setting and policy, is indispensable for holistic and sustainable prevention and management of non-communicable diseases.

Health systems and health-promoting synergies

A One Health approach to interventions (eg, diagnostics, medicines, vaccines, and similar strategies for promoting health and preventing disease) entails collaboration across two or more sectors and disciplines to harness health-promoting synergies and holistically advance health and wellbeing throughout the socioecological system. Inclusive processes that prioritise community engagement can facilitate context-adapted interventions. Interventions with multispecies applicability can also be cost-effective. The added value of One Health interventions needs to be demonstrated through relevant metrics, and evaluation and decision support frameworks should account for not only the wellbeing of humans, but also that of animals and the environment.

Food systems

The One Health approach is important for navigating the complexity of food systems challenges, for cultivating unifying values around roles and responsibilities, and, ultimately, for informing and realising the systemic changes that are necessary to deliver food safety and security in globally and intergenerationally equitable ways. A transformation towards healthy, sustainable, safe, and equitable food systems demands attention to financialisation and corporate dominance. Corporate actors must be engaged to address the conflict between profit and sustainability from a global perspective, while taking local ramifications into consideration. Understanding of food production systems must also go beyond linear analyses of value and supply chains. There is a need for greater awareness of food production inputs, such as feed, medications, and water sources, as well as of post-farm processes, such as food transport and processing, including the management of waste and contaminants. One Health provides a holistic approach to addressing food production and waste challenges, while supporting the billions of lives and livelihoods that are at stake.

(Continues on next page)

(Key messages continued from previous page)

Governance

The Commission asserts that One Health plays a pivotal role in the global health and sustainability agendas of the 21st century and beyond, by galvanising transformations within global governance, economics and finance, and knowledge in service to equitable, sustainable, and healthy socioecological systems. For governance, the Commission recommends the integration of One Health within the global, regional, and national governance structures. At the global level, this integration demands a One Health governance framework. The One Health Quadripartite and One Health High-Level Expert Panel could evolve to address this need, if sufficiently resourced with adequate funds, a full-time workforce, and legal authority. At the national and regional levels, all government ministries, together with relevant sectors and stakeholders, should continue to develop and implement One Health-guided governance reforms, including what this Commission conceives of as One Health in All Policies. At all governance levels, collaboration across disciplines and sectors, participatory approaches that prioritise community engagement, and diversity are needed.

Economics

There is overwhelming evidence supporting the cost-effectiveness of One Health interventions relative to non-One Health alternatives. The Commission posits that the prevailing, anthropocentrically oriented global economic system, in which growth is measured in terms of gross domestic product (GDP), is inherently antithetical to the One Health goal of equitable, sustainable, and healthy socioecological systems. In addition to

the urgent need to explore alternatives to economic paradigms anchored in GDP-growth economics, such as Doughnut Economics, the Circular Economy, and the Wellbeing Economy, the Commission endorses the recent high-level rethinking of the relationship between sustainability, wellbeing, and the global economy that has been advanced by the WHO Council on the Economics of Health For All. The Commission calls for a slow, yet radical, paradigm shift in local, national, and international budgetary allocations, innovative financing of One Health initiatives, and novel economic frameworks focused on realising and sustaining healthy socioecological systems.

Knowledge

The Commission asserts the importance of equitable and inclusive practices of knowledge production, integration, and sharing that yield a diverse cadre of competent professionals and empowered citizens who espouse One Health values and who generate transformative, systemic change for the achievement of sustainable health throughout the socioecological system. This includes mainstreaming One Health throughout the higher education sector, by adopting a core set of One Health competencies and cultivating enabling conditions for One Health research, with measures of success that include social and policy impact. Achieving a global citizenry literate in One Health requires the integration of diverse knowledge systems, including Indigenous knowledge, intergenerational knowledge exchange, and the translation of knowledge into action.

Ghana (M K Agbogbey, J H Amuasi); **German Center for Infection Research**, Hamburg, Germany (Prof J May); **National Institute for Communicable Diseases**, Division of the National Health Laboratory Service, Johannesburg, South Africa

(Prof L Blumberg DSc); **Faculty of Veterinary Service**, University of Pretoria, Pretoria, South Africa (Prof L Blumberg); **University of Stellenbosch**, Western Cape, South Africa (Prof L Blumberg); **Right to Care**, Centurion, South Africa (Prof L Blumberg); **Department of Communication**, Michigan AgBio Research, Michigan State University, East Lansing, MI, USA (Prof M K Lapinski PhD); **World Organization for Animal Health**, Paris, France (M Stone MVS); **SPADE Solutions**, Wellington, New Zealand (M Stone); **Department of Global Health**, School of Public Health, Kwame

Nkrumah University of Science and Technology, Kumasi, Ghana (J H Amuasi, M K Agbogbey); **National Institute of Parasitic Diseases**, Chinese Center for Disease Control and Prevention and Shanghai Jiao Tong University School of Global Health, Shanghai, China

(Prof N Xiao PhD); **Department of Clinical Microbiology**, Umeå University, Umeå, Sweden (O A Hassan PhD); **UK Health Security Agency**, London, UK (O Dar MBBS MSc); **Chatham House**, Royal Institute of International Affairs, London, UK (O Dar); **Nature.Health.Global**, Tallman, NY, USA (P Daszak PhD); **SingHealth Duke-NUS Global Health Institute**, Duke-NUS Medical School, National University of Singapore, Singapore (R R Quito MD DrPH); **Department of Informatics**, University of Oslo, Oslo, Norway (S Sahay PhD); **Sustainable Healthcare Education**, Oslo, Norway (S Sahay); **The University of the West Indies**, Kingston, Jamaica (T A Samuels MBBS PhD); **Faculty of Veterinary Medicine**, Norwegian University of Life Sciences, Ås, Norway

(Prof Y Wasteson DVM PhD)

and healthy future, and must be central to the post-2030 global health and sustainability agenda.

Introduction

Background

Humans, other animals, plants, and a myriad of other biotic and abiotic elements in our shared ecosystems are fundamentally interconnected. Although the nature of our inter-relation varies over time and across species and cultures, recent centuries are distinguished by unprecedented human impact and formidable transformations, including industrialisation, urbanisation, and globalisation. These developmental trajectories have advanced health markedly, but largely at the expense of equity and sustainability, and they have generated an expanding array of interlinked threats to health and wellbeing throughout the socioecological system. Climate change is accelerating, biodiversity is declining, crises of food insecurity and freshwater scarcity are progressing, and the impact of infectious diseases, non-communicable diseases (NCDs), and antimicrobial resistance (AMR) is increasing.

As a global society, how we understand and respond to current and impending health and sustainability crises is of enduring consequence for future generations and for the socioecological system at large. This Commission calls for collective action and systemic transformation, guided by a One Health perspective and approach. One Health advances an established and expanding interdisciplinary and transdisciplinary understanding of the fundamental interconnectedness and health interdependencies among humans, other animals, plants, and a myriad of other biotic and abiotic elements in the ecosystem, as well as a multisectoral approach to addressing the pressing global health and sustainability challenges of contemporary times and to realising and sustaining healthy socioecological systems.

The Lancet One Health Commission

The vision of the *Lancet* One Health Commission is healthy socioecological systems, achieved and sustained through an equity oriented, interdisciplinary, transdisciplinary, and multisectoral One Health approach to advancing health among humans, other animals, plants, other biological

Correspondence to:
John H Amuasi, Department of
Global Health, School of Public
Health, Kwame Nkrumah
University of Science and
Technology, Kumasi, PMB UPO,
Ghana
amuasi@kccr.de

Panel 1: Glossary

Added value

Added value, in the context of One Health and this Commission, refers to increased benefit in the form of more efficient improvements to health among humans, other animals, plants, and the wider ecosystem, achieved through interdisciplinary, transdisciplinary, and multisectoral collaboration, versus siloed approaches.^{1,2} Efficiency is understood as the optimal ratio between maximum effect or impact and minimal effort and resources.

Anthropocentrism

Anthropocentrism is a human-centric paradigm. Humans are understood as the central and most important entity of existence, and the rest of the living and non-living world are regarded from the vantage point of human experience and values.³

Biodiversity

Biodiversity refers to the multitude of and variation among all life on earth, including genes, species, and ecosystems.⁴

Epistemology and ontology

Epistemology can be understood as the theory of knowledge, including the nature of truth and the conditions of knowing. Ontology can be understood as the theory of reality, including the nature of being and the relations between the entities that are said to exist. Natural sciences lean towards positivist paradigms, which are epistemologically and ontologically oriented towards objective facts. These facts include patterns of cause and effect that are understood to exist independently of the researcher, which the researcher seeks to uncover, often through quantitative methods that prioritise objectivity, including by controlling for variables and biases. Much of the social sciences, however, lean towards interpretivist paradigms, which are epistemologically and ontologically oriented towards the social construction of reality. This includes the coexistence of multiple and situated subjective truths, insight into which is commonly generated through often qualitative methods that prioritise the coproduction of meaning, including through dialogue and interaction. Thus, although disciplines structure scientific and academic activities in important ways, interdisciplinary and transdisciplinary collaboration is needed.

Ecocentrism

Ecocentrism is an ecosystem-oriented paradigm in which all entities of the biosphere are attributed inherent value and recognised for the role that they play in the ecological cycle of life. Biocentrism is similar to ecocentrism but extends inherent value to all living elements of the ecosystem, as opposed to all living and non-living elements.⁵

Ecosystem

An ecosystem is a community of biotic and abiotic interactions, nutrient cycles, and energy flows comprising animals (including humans and insects), plants, and the life-supporting physical and chemical resources of the water, land, atmosphere, and sun.⁶

Ecosystem services

Ecosystem services are the benefits provided by ecosystems that support human life and advance human wellbeing. Examples include the provision of water, food, air, shelter, and fuel; the regulation of climate, waste, and disease; and the cultural, spiritual, and recreational value of nature.⁶

Environment

A natural environment is often understood as a space, free from human intervention, in which the abiotic and biotic elements of the ecological world exist and interact. The built environment refers to the human-made structures and features of the spaces in which humans operate. The natural–built environment dichotomy, as well as the indoor–outdoor dichotomy that tends to follow, is conceptually helpful to some extent, but also inherently problematic. Elements of natural and built environments coexist in the same spaces, and the human drive to dwell and thus build can also be understood as natural.⁷ Environments are shaped by interactions between the ecological and social, thus underscoring the use of a socioecological systems perspective.

Equality and equity

Although the terms equality and equity are often used interchangeably and inconsistently, equality can be understood as an identical distribution of opportunity and resources, whereas equity entails recognising the social inequalities that exist and distributing resources and opportunities proportional to that which is needed to have equally positive outcomes for all.⁸ Intersectionality is the theory of how multiple inequalities among humans intersect along lines of, for example, ethnicity, race, gender, ability, sexuality, nationality, and religion.⁹ Moreover, calls for decolonisation seek to not merely redistribute within the social system that exists, but rather to dismantle the historically entrenched and socially institutionalised dynamics of power and discrimination that systematically privilege some demographics and disadvantage others.^{10,11}

Interdisciplinarity and transdisciplinarity

In this Commission, we advocate for interdisciplinarity and transdisciplinarity, which we regard as entailing an interdisciplinary integration and synthesis of knowledge and methods from multiple disciplines, as well as a transdisciplinary transcendence of disciplinary boundaries and a participatory approach to integrating expertise from beyond academia and science, such as from members of local communities.¹²

Multisectoralism and multisectoral coordinating mechanisms

In the context of One Health, which is per definition a multisectoral approach, multisectoralism is a call for collaboration between all relevant sectors, including between the human, animal, and environmental sectors, and between the public sector, the private sector, and civil society. Multisectoral coordination mechanisms are established to support and advance this collaboration.¹³

(Continues on next page)

(Panel 1 continued from previous page)

One Health

One Health is an interdisciplinary, transdisciplinary, and multisectoral approach to addressing global health and sustainability challenges and to advancing equitable, sustainable, and healthy socioecological systems. The foundation of the One Health approach is the fundamental interconnectedness of humans, other animals (terrestrial, aquatic, domesticated, and wild), plants, other biological kingdoms (including fungi), and all other biotic and abiotic entities in the ecosystems that we are part of and share (including soil, water, air). The principles that make up the One Health ethos espoused by this Commission are holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability.

Resilience

In a socioecological perspective, resilience refers to an adaptive capacity for dynamic balance, in which crucial functions are maintained in transformation.¹⁴

Socioecological system

A socioecological system comprises the diverse, complex, and dynamic inter-relations and interdependencies between and among the ecological systems of the natural world and the social, cultural, political, and economic systems of the human-constructed world.¹⁵

Sustainability and sustainable development

Sustainability can be understood as the balance between economic, social, and environmental interests that is necessary to enable humans, other animals, plants, and the wider ecosystem to coexist and thrive over time. Sustainable development is the process through which the needs of the present are met without compromising the possibilities for meeting these same needs in the future.¹⁶

kingdoms, and the environment at large, including soil, water, and air. In developing this Commission, we had three main objectives.

First, we aimed to generate insight into the complex socioecological relationships between humans, other animals, plants, and all other biotic and abiotic elements of the shared environment. We also aimed to explicate the importance of these inter-relations for sustainability and health throughout the socioecological system.

Second, we aimed to synthesise and appraise the current state of knowledge and evidence regarding the need for and value of One Health for addressing health and sustainability challenges, with an emphasis on surveillance, infectious diseases, AMR, NCDs, and food systems. We also aimed to identify knowledge gaps and priorities for advancing and sustaining health throughout the socioecological system.

Third, we aimed to propose avenues for One Health operationalisation, with a focus on governance, economics, and knowledge. We also aimed to explicate the pivotal role that One Health can play in 21st-century health and sustainability agendas, as well as its centrality to the transformed socioecological horizon that lies ahead.

A glossary of terms can be found in panel 1.

The historical and cross-cultural foundations of One Health

The socioecological interconnections that underpin One Health have historically rooted and diverse cross-cultural importance. Buddhist doctrines of interbeing and non-violence promote compassionate and peaceful coexistence with nature and among all living beings.^{17,18} The Indigenous cultures of the world are also, although

heterogeneous, rooted in a shared fundament of harmonious inter-relation between and among humans and the natural world.^{19,20} Among ancient Egyptians, animals were revered as sacred deities, mummified together with humans, and laid to rest in shared tombs.²¹ Saint Francis of Assisi, the Christian patron saint of animals and the environment, loved animals as brothers and sisters and advocated for their welfare.²² Socioecological harmony and the rights to health and wellbeing of animals are also embedded in the foundational teachings of Islam and Judaism.²³⁻²⁵ Mahatma Gandhi, the Hindu leader of India's peaceful independence movement, is known to have linked the moral advancement and greatness of a nation to the way its animals are treated.²⁶

The relationships between humans and plants have a rich history as well, with theological, philosophical, and historical underpinnings spanning diverse civilizations, cultures, and religions.²⁷ These relationships include the influence of plants on the arts and literature, as seen in the tree of life symbolism, which signifies similar understandings and values around the world,²⁸ and as seen throughout Greek and Roman mythology.²⁹ The oldest recorded evidence of the medicinal value of plants is a collection of recipes inscribed on a Sumerian clay tablet. Throughout ancient history, many contributions to plant medicine can be recognised, including the foundational work *De Materia Medica*, written by Dioscorides, who is regarded as the father of pharmacognosy.³⁰

Within the histories of biomedicine, appreciation of socioecological health interdependencies extends back to 400 BCE, when Hippocrates, and subsequently Plato, Aristotle, and Galen, investigated the effect of the

environment on health.^{31–35} During the same period, the study of animal anatomy, animal diseases, and cross-species commonalities paved the way for comparative medicine.^{33,36}

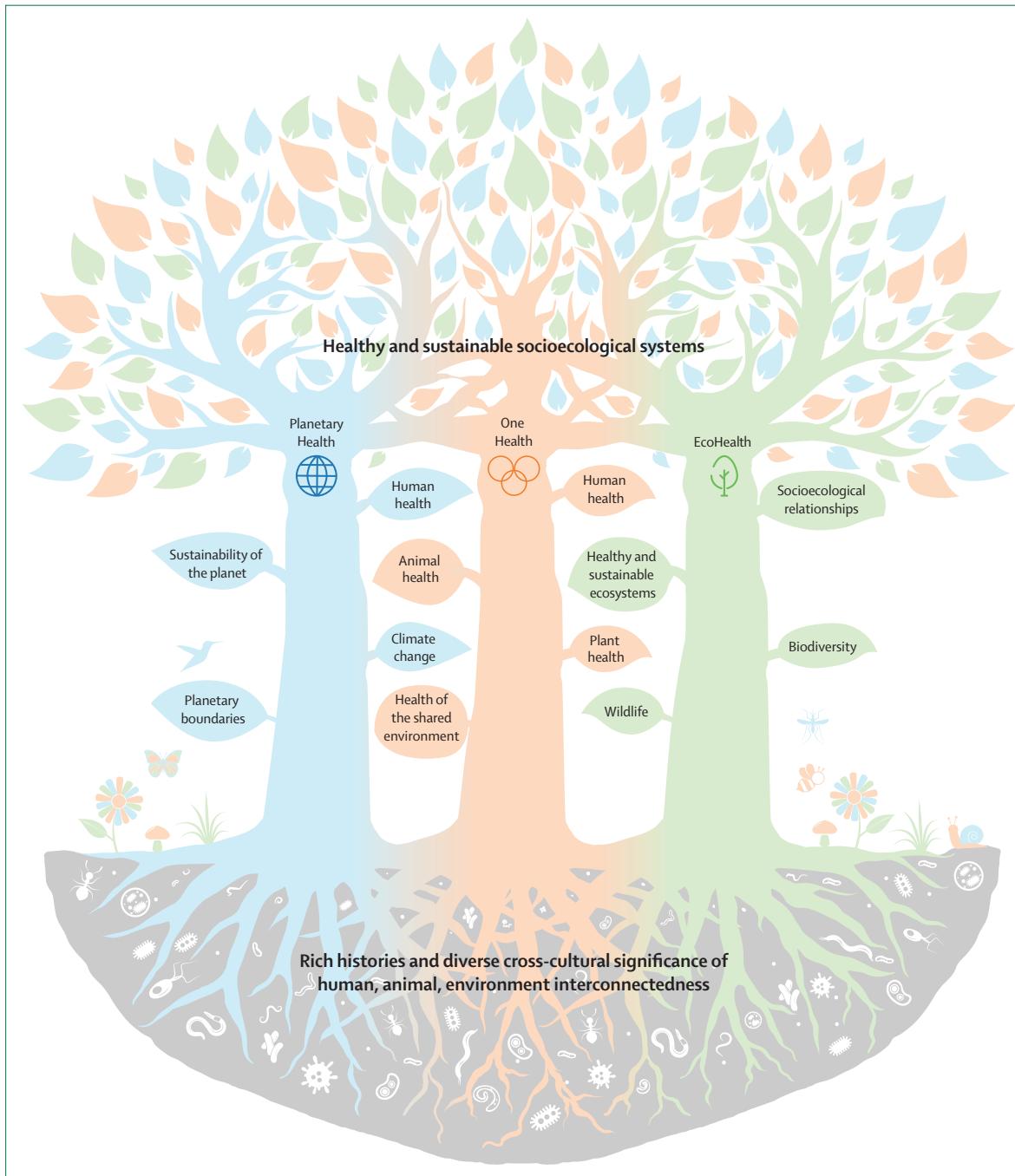
Between the years 1600 and 2000, several veterinary and human health advances took place, which can be recognised today as One Health precursors. Italian physician Giovanni Lancisi (1654–1720) examined the role of the environment in pathogen transmission among animals and humans, French veterinary surgeon Claude Bourgelat (1712–79) established the world's first veterinary faculty,³⁶ and German physician Rudolf Virchow (1821–1902) coined the term zoonosis and proclaimed, “there is no scientific barrier, nor should there be, between veterinary medicine and human medicine; the experience of one must be utilized for the development of the other”.³⁷

In the 1900s, American veterinarian James H Steele and Canadian physician William Osler improved understanding of pathogen transmission between animals and humans and of the links between human and veterinary medicine.^{38,39} In 1964, veterinary public health expert Calvin Schwabe called for collaboration between the medical and veterinary professions and coined the concept One Medicine, which gained momentum in the 21st century and set the stage for the emergence of the One Health concept.⁴⁰ In 1962, American ecologist Rachel Carson published the book *Silent Spring*, which raised awareness of the destructive human impact on nature and galvanised the environmental movement.^{41,42} In 1977, Kenyan professor of veterinary anatomy Wangari Maathai founded The Green Belt Movement, which empowered women and their communities to improve their livelihoods through environmental conservation and raised international awareness of the links between environmental destruction, deforestation, and food insecurity on the one hand, and disempowerment and disenfranchisement on the other.⁴³

Contemporary currents in One Health

The fundamental assertion that there is just one health, based on the premise that a siloed consideration of human, livestock, or wildlife health is not tenable, surfaced in a news article about Ebola in 2003.⁴⁴ The term One Health was officially coined at a conference the following year.⁴⁵ This conference also inspired the Manhattan Principles, which comprise 12 recommendations for holistic approaches to preventing zoonotic disease epidemics and promoting ecosystem integrity.⁴⁶ In the biomedical literature, the term One Health first appeared in 2005, in a *Lancet* publication calling for the One Health approach.^{47,48} In the time since, the Manhattan Principles have been revised and expanded by the Berlin Principles,⁴⁹ One Health initiatives and networks have proliferated around the world,⁵⁰ and the World Bank has endorsed the

economic value of One Health.⁵¹ One Health has also been institutionalised at various levels of academia and government, including through the 2010 agreement between the Food and Agriculture Organization of the UN (FAO), the World Organisation for Animal Health (WOAH), and WHO to collaborate closely at the human–animal–environment interface.⁵² This tripartite agreement evolved into a quadripartite partnership in 2022, following the incorporation of the UN Environment Programme (UNEP).⁵³ In conjunction, the One Health High-Level Expert Panel (OHHLEP) was founded.⁵⁴


Because of its biomedically driven recent history, One Health has traditionally leaned towards positivist paradigms that emphasise objective facts (panel 1). Moreover, despite its long-standing conceptual foundation of human–animal–environment interconnection, One Health scholarship has predominantly focused on infectious diseases of zoonotic origin, collaboration between the human and veterinary health sectors, and, more recently, AMR. NCDs have so far been neglected. Although One Health is progressing towards interdisciplinarity, transdisciplinarity, and systems thinking,^{55–56} a need remains to integrate the social sciences and humanities more extensively;⁵⁷ deepen understanding of the socioecological drivers of health among humans, other animals, plants, and the environment at large; and prioritise community participation. Increasing emphasis has been placed on a broad spectrum of health and sustainability concerns linked to biodiversity, climate, environment, and food and water security.⁵⁸

The value of Indigenous knowledge for One Health is also increasingly appreciated. An increase in One Health partnerships that include Indigenous peoples has been called for,^{19,20,59,60} and crucial attention has been directed to the relationship between knowledge and power; to colonial legacies of poverty, health inequity, and intersectional vulnerability; and to the importance of epistemological pluralism for decolonising global health and advancing One Health.^{20,61} Notably, despite constituting approximately 5% of the global population, Indigenous people have sustained 80% of the world's biodiversity on the land that they occupy globally (approximately 22%),⁶² which also intersects with 40% of the world's protected areas and ecologically preserved landscapes.⁶³ This ecological conservation has been largely attributed to the harmonious socioecological inter-relations, conservation values, and environmental stewardship that are inherent to many Indigenous worldviews, cultures, and systems of governance.^{19,20} Inclusion of local communities more broadly, with appreciation of the substantial knowledge they possess, is crucial.

The 2030 Sustainable Development Agenda, represented by the 17 Sustainable Development Goals established in 2015, is among the previous decade's most overt expressions of global consensus around the interdependent relationship between health, sustainability, and global prosperity. The Sustainable

Development Agenda and One Health are inherently aligned, with One Health elucidating the human–animal–environment interconnections at the core of each goal.

However, progress towards the ambitious and widely endorsed, but not legally binding, targets has been insufficient, largely due to weak accountability and little

Figure 1: Integrated approaches to achieving healthy and sustainable socioecological systems

Planetary Health focuses on the relationship between humans and the natural systems on which human health depends, as regulated by the nine planetary boundaries.⁶⁴ Planetary Health is premised on the proposal that we have entered a new planetary epoch, known as the Anthropocene,⁶⁵ in which these life-sustaining systems have been fundamentally altered by human activity, with such rapidity that human health and wellbeing are potentially threatened. EcoHealth seeks to understand health in the context of socioecological relationships, with the aim of achieving sustainable health throughout the ecosystem. Biodiversity and equity are core values.^{66,67} Although multiple perspectives coexist within and between each of these fields, and although each has evolved and diversified, this figure depicts some of the conventional foci of Planetary Health, One Health, and EcoHealth, which all advance a holistic perspective on socioecological health interdependencies, generate insight into socioecological interconnection, and contribute to a shared ambition of healthy and sustainable socioecological systems.

translation into policy and financing. Systemic transformations in governance, economics, and knowledge will be crucial as 2030 approaches and in the future beyond. One Health, as will be shown in this Commission, must play a central role.

An overview of the Commission

This Commission draws on the knowledge advanced by several *Lancet* Commissions, including on health and climate change, planetary health, healthy diets from sustainable food systems, and global governance for health. We also build on the One Health Series published in *The Lancet* and the work of numerous high-level organisations, including WHO, FAO, WOAH, and UNEP; the One Health Quadripartite that they constitute; the World Bank; the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); and the Intergovernmental Panel on

Climate Change (IPCC). In sections 1–6, we synthesise and appraise the robust and growing scientific evidence base for One Health, with an emphasis on infectious diseases, AMR, and NCDs. We also examine the established added value of One Health and elucidate remaining knowledge needs, research priorities, and the potential for One Health to generate increasingly deep interdisciplinary and transdisciplinary insights into the socioecological, health-related interconnections between humans, other animals, plants, and the environment at large. In section 7, we present a One Health case study on food systems. In section 8, we build on the marked political traction that One Health has achieved, by proposing three avenues for One Health operationalisation, implementation, and institution—alisation and by explicating the role that One Health can play in realising equitable, sustainable, and healthy socioecological systems. Embedded throughout this

Panel 2: An operational One Health ethos

The One Health ethos put forward by this Commission builds on existing One Health principles and frameworks^{46,49,68,69} and reflects values that are inherent to EcoHealth and Planetary Health.^{70,71} This ethos is also aligned with the definition of One Health put forth by the One Health High-Level Expert Panel, which this Commission endorses. This ethos also emphasises a sustainable and optimal balance between the health of people, animals, and ecosystems, with appreciation for the health interdependencies between humans, domesticated and wild animals, plants, and the environment at large, as well as the need for collaboration across disciplines and local, national, regional, and global sectors. Similarly, this ethos is aligned with the One Health principles outlined by the One Health High-Level Expert Panel, which include equity, sociopolitical parity, socioecological equilibrium, stewardship, transdisciplinarity, and multisectoral collaboration.⁷²

Holism and systems thinking

One Health assumes a holistic perspective that appreciates the complexity of socioecological systems, including the dynamics of uncertainty, nonlinearity, mutability, interdependence, and varied spatiotemporal scales. Insight is generated through an understanding of systemic interconnections and, therein, tipping points, feedback loops, and resilience. In short, the whole is more than the sum of its parts and each part is best understood in terms of its inter-relations within the whole.⁷³

Epistemological pluralism

Epistemological pluralism appreciates that there are multiple ways of knowing, which together enable a more comprehensive understanding of the complexities of the socioecological system. Epistemological pluralism can be realised through transdisciplinarity. Transdisciplinarity entails an interdisciplinary integration and synthesis of knowledge, perspectives, and methods from multiple disciplines,⁷⁴ as well as a trustful, participatory, transparent, and inclusive processes of knowledge

exchange and integration that transcends disciplinary boundaries and brings together diverse knowledge systems in equitable ways, resulting in the emergence of novel, holistic perspectives.⁷⁵ Operationally, this process translates into multisectoral, interlevel, and multilateral collaboration, as well as participatory processes and partnerships that facilitate the integration of scientific, Indigenous, and situated knowledges, with recognition that these and other forms of knowledge are not mutually exclusive.

Equity and egalitarianism

The principle of equity that underpins One Health demands an active creation of the conditions under which all humans and other animals, plants, and the ecosystem can thrive, now and in the future. The reach is thus planetary (including the entirety of the ecosystem), global (including all humans), and intergenerational (including all planetary constituents of the present and future). Ecological and social justice are imperatives. Egalitarianism demands political, economic, and social equality, and, likewise, an equal distribution of agency. Core tenets include participation, inclusivity, solidarity, trust, and transparency, all of which challenge and have the potential to reconfigure dynamics of privilege and vulnerability.⁷⁶

Stewardship and sustainability

Stewardship couples the right to benefit from the ecological world with the socioecological responsibility to care for and sustain it, and the knowledge and freedom of choice that is possessed today with the power and duty to act in service to tomorrow. One Health stewardship cultivates leadership and participation for equitable, sustainable, and healthy socioecological systems.⁷⁷ Sustainability can be understood as the state of balance between economic, social, and environmental interests that is necessary to enable humans, other animals, plants, and the wider ecosystem to coexist and thrive over time.

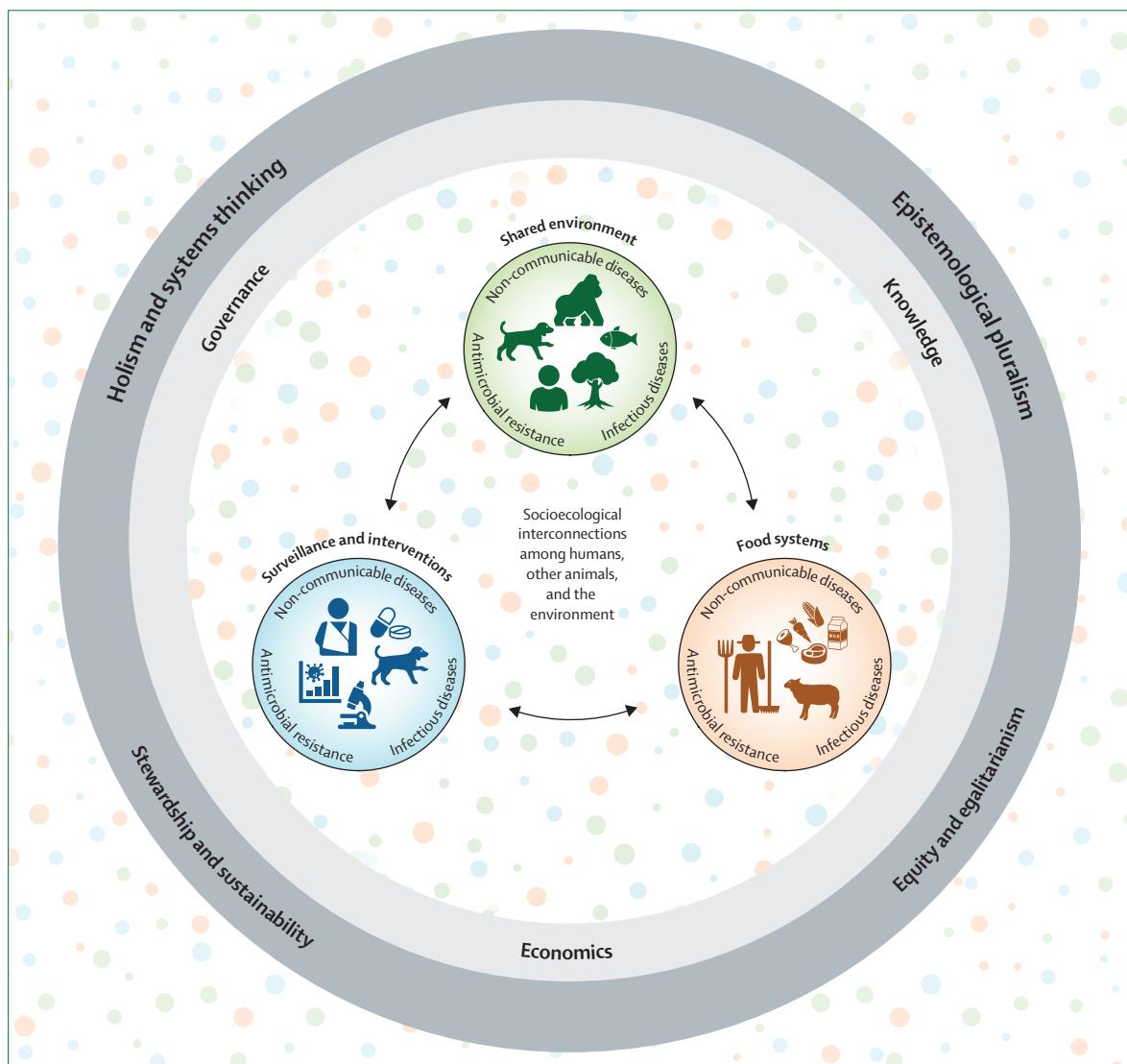
Commission is a collection of interdisciplinary, transdisciplinary, socioecologically oriented, equity-centred, and inclusivity-centred principles that can guide the equity and sustainability transitions that are at the heart of the One Health paradigm shift (figure 1, panel 2, figure 2). When referring to the constituents of the socioecological system and the domains across which One Health advances health, we are referring to humans, other animals (both terrestrial and aquatic as well as domesticated and wild), plants, other biological kingdoms (including fungi), and all other biotic and

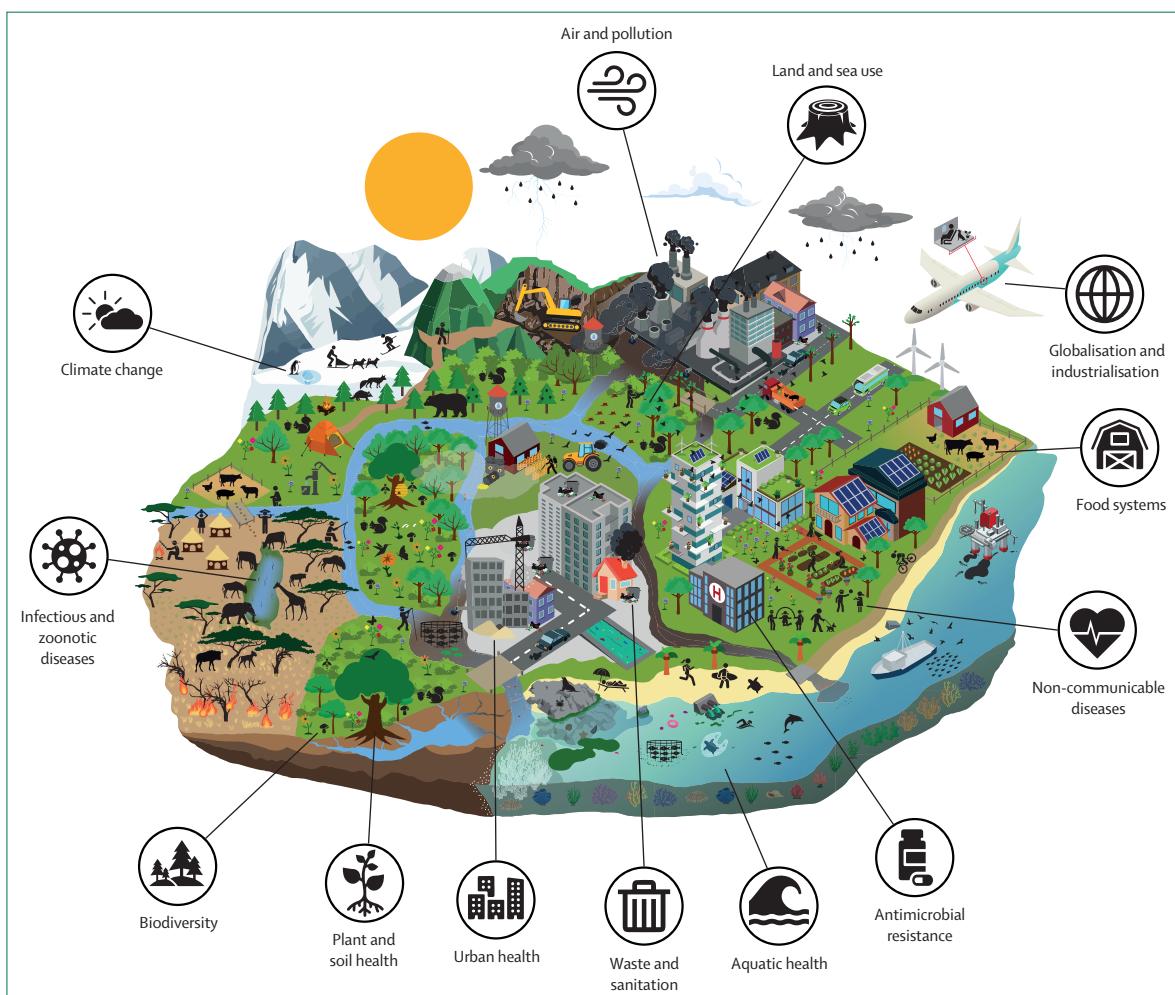
abiotic elements that make up the environment at large (including soil, water, and air). We include these elaborations in parentheses here and intend for them to be implied throughout the remainder of the Commission, albeit without reiteration.

1. Socioecological interconnection: the foundation of One Health

1.1 A socioecological systems perspective

Traditionally, One Health scholarship has focused on the prevention and control of zoonotic diseases at the




Figure 2: One Health wheel

One Health has classically been illustrated as three intersecting circles representing humans, animals, and the environment, but this has been critiqued as reinforcing a western-centric ontology and a heavily biomedical epistemology that risks disregarding the social, cultural, historical, and political contexts of health,⁷⁸ as well as Indigenous and situated knowledges.⁷⁹ The classic One Health illustration is stymied by a disproportionately heavy emphasis on the human-animal interface and zoonotic diseases, which entrenches the false dichotomy of humans and other animals. Instead, we present an illustration that conveys the fundamental interconnectedness of One Health and depicts our approach to anchoring socioecological health and sustainability in the interconnectedness of life, without boundaries between humans, other animals, and the environment. The illustration also depicts three avenues for One Health operationalisation, implementation, and institutionalisation (governance, economics, and knowledge), as well as, in the outermost layer, the principles encompassed by our proposed One Health ethos.

human–animal interface, collaboration between the human and veterinary health systems, and, more recently, AMR.^{80–83} The environment has conventionally received insufficient attention.^{81,84–87} In this Commission, we appreciate the centrality of the environment and recognise socioecological interconnection as the foundation of One Health and as advancing a socioecological perspective on the health interdependencies among humans, other animals, plants, and the environment at large. Of central concern is the triple planetary crisis of climate change, pollution, and biodiversity loss, and the threats that it poses to sustainability and health.⁸⁸

Scientifically, this perspective is informed by an interdisciplinary and transdisciplinary field of socioecological systems research that spans the natural sciences, social sciences, and humanities. This research examines the complex inter-relations between and among the ecological systems of the biosphere and the social, cultural, political, and economic systems of the human-constructed world, helping us to understand

their convergence and the dynamics that result.⁸⁹ Among the dynamics inherent to socioecological systems (ie, the qualities that characterise socioecological inter-relations) are fluctuation, uncertainty, non-linearity, and interdependence. In addition, socioecological systems are characterised by varied and intersecting spatiotemporal scales, from the microspatial scale of individuals and communities to the macrospatial scale of global and planetary systems, and from the intragenerational timescales to the intergenerational and evolutionary timescales. A socioecological systems perspective is therefore holistic and grounded in an understanding of systemic interconnections and the potential of changes within any facet of the system and at any scale to affect and catalyse effects of importance for other facets, at other scales, and for the system as a whole.⁹⁰ A socioecological systems perspective also generates insight into resilience, which can be understood as the adaptive capacity of an ecosystem to maintain crucial functions amid transformation.¹⁴ As

Figure 3: Mapping the socioecological system

For a detailed explanation of each icon included in this figure please see the appendix (pp 27–28).

such, a socioecological systems perspective enables full expression of the principles outlined in our One Health ethos (panel 2). This perspective also sheds light on the significance of the environment, and therein plants, soil, fungi, water, air, wildlife, biodiversity, and climate (figure 3).

1.2 Plants, soil, and fungi

The interconnections and health interdependencies among plants, soil, fungi, and animals, including humans, are abundant. Through converting sunlight, water, and carbon dioxide to energy and releasing oxygen (ie, photosynthesis), plants serve essential atmospheric functions and are the fundament of the ecological food chain, as well as a vital source of habitat, renewable and biodegradable fibres, medicines and therapeutics, and cultural and spiritual significance.^{91,92} Moreover, plants, the pollens and nectars that they produce, and the products that are derived from them supply more than 80% of the food consumed by humans and provide nutrition for domestic and wild animals, including insects.⁸⁵ As such, plants play a crucial role in the food systems and livelihoods on which the health and wellbeing of humans and other animals depend.

The health of plants is directly and indirectly affected by humans and other animals. Plants face several health threats that can lead to compromised yields, quality, and nutritional value, as well as other consequences for health throughout the socioecological system. These threats and consequences include plant pathogens that cause the loss of crops, potentially jeopardising livelihoods and risking malnutrition and famine; mycotoxins, which are naturally produced by moulds that grow on crops and food products, but can cause severe disease if ingested by humans or other animals; pathogens that colonise plants and use them as vectors between animal hosts, risking foodborne disease; and misuse of pesticides and other pollutants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS; ie, forever chemicals). Use of PFAS risks exposing humans and other animals to dangerous residues, and disrupting the diversity and balance of bacteria, fungi, and their predators in the soil, which can have implications for the plant microbiome, plant resilience, and the gut microbiome and immune response of humans and other animals who consume plants and plant products.^{85,86,92-96}

Healthy plants, and hence, healthy humans, animals, and socioecological systems, are sustained by healthy soil. Soil cycles microbials between the environment on the one hand and plants and animals on the other, underscoring its crucial role in achieving and maintaining a diverse and balanced, interconnected microbiome.⁸⁶ Diversity and balance among gut microbiota are important for the development and functioning of the immune system, and thus for health among humans and other animals.⁹⁷ A growing body of research is generating insight into the inter-relationships

between the soil and gut microbiome.^{98,99} Several additional interdependencies between the health of soil, plants, humans, and other animals are also important, including that the nutritional content of plant-based foods and feed is largely determined by the fertility and nutrient balance of the soil; that soil distributes rain water and filters out contaminants, hence serving crucial water supply and water quality functions; that soil sequesters carbon, thereby mitigating climate change; and that antibiotics and other medicines are derived from soil.¹⁰⁰⁻¹⁰² Threats to the health of soil and the consequences for plants, humans, and other animals include deposits of PFAS, plastics, and heavy metals. The deposit of heavy metals is largely a result of agricultural and mining practices, constitutes an exposure health risk for humans and other animals, and potentially promotes AMR.¹⁰³ Desertification also threatens plants and increases the health risks posed by airborne dust, including exposure to soilborne pathogens,^{100,104} which can ultimately lead to the destruction of the ecosystem at large.

Fungi also play a crucial role in the socioecological system. Although greater attention is conventionally directed to the risks posed by fungi, fungi serve many essential functions. Some fungi are decomposers that are central to cycling nutrients in the soil, sequestering carbon, and degrading environmental pollutants. Some fungi are also nutrient-rich food sources for humans and other animals, possess medicinal properties, serve natural biofertilising and pest-control functions, and can be used as a sustainable alternative to unsustainable plastic, synthetic, and other materials. Together with plants and soil, fungi are threatened by deforestation, other forms of land-use change, and soil degradation.^{105,106}

1.3 Water

From the freshwater supplies that enable food production, to the wetland and marine ecosystems that regulate climate, maintain the global hydrological cycle, and support biodiversity, the socioecological importance of water cannot be overemphasised, nor can the gravity of the threats to health and sustainability posed by escalating water crises.

More than half of the global population is affected by freshwater scarcity, which jeopardises the irrigation systems that food and feed production depend on, risks infectious disease outbreaks when crops are grown with contaminated water, facilitates the transmission of infectious diseases due to insufficient hygiene, and drives conflict over natural resources and displacement, all of which exacerbate poverty, food insecurity, and malnutrition.¹⁰⁷⁻¹⁰⁹ These burdens are disproportionately borne by women and girls, who are estimated to spend more than 200 million h daily collecting water,¹¹⁰ and by the 700 children younger than 5 years who die each day from diarrhoeal diseases associated with contaminated water and food and inadequate hygiene and sanitation.¹¹¹

Severe inequities in water access exist globally, including between high-income and low-income urban locales, between industrial agriculture and small-scale subsistence farms, and between men and women.

Water scarcity and its effects on global health, food security, grain production, and gross domestic product (GDP) are expected to continue to rise under the increasing pressure of climate change and unsustainable

human demand, with a continued disproportionate effect on marginalised populations and those with low income, thus deepening inequities and impeding progress towards the 2030 Sustainable Development Agenda.^{108,112} Additionally, by 2050, growing populations in flood-prone regions, indiscriminate deforestation, wetland mismanagement, rising sea levels, and climate change are anticipated to subject 2 billion people to flood disasters and their impacts, including vector-borne and waterborne diseases, destruction of infrastructure and property, productivity and investment losses, and loss of crops, livestock, and aquaculture.¹¹³

Oceans and the crucial functions that they serve within the socioecological system are also at stake. Oceans are among our richest sources of biodiversity, but human-driven extinctions and climate change are reducing biodiversity, and both biodiversity loss and climate change are associated with increases in invasive species.¹¹⁴ Moreover, unsustainable exploitation of marine ecosystems jeopardises marine life and generates direct health risks for humans and other animals. This exploitation includes destructive harvesting practices and intense fishing, as well as pollution from oil spills, agricultural and urban runoff, and point sources (eg, factories and sewage treatment plants), which contaminate the sea with antimicrobials and other pharmaceuticals, plastics, persistent organic compounds that bioaccumulate in marine life, and toxic, heavy metal, and radioactive wastes.¹¹⁵ The associated health threats include contaminated seafood and seafood-borne infectious diseases; algal bloom toxins that risk mortality among fish, other aquatic life, and humans; plastics-induced animal injuries and deaths; and chemical pollutants. Indirect threats to health also arise when coastal economies and cultures collapse^{114,115} and when marine-derived therapies (which research suggests could satisfy some of our most pressing treatment needs for cancer, inflammation, infectious diseases, and other health challenges), aquatic food supplies, and the psychosocial health benefits and sociocultural value associated with oceans and coastal environments become at risk.^{116–118}

1.4 Air

From a socioecological perspective, air is another abiotic element of One Health significance. Due to human-induced and human-accelerated environmental degradation and air pollution, 99% of the human population breathes suboptimal and health-threatening outdoor air.¹¹⁹ Other animals and plants are exposed as well. Exposure to polluted air is inimical to cardiorespiratory health for humans and other animals, and to the metabolic function of plant species. An estimated 4.2 million premature human deaths were attributed to outdoor air pollution in 2015, the majority of which occurred in LMICs.¹²⁰ For plants, air pollution affects net carbon fixation, potentially catalysing a

Panel 3: Climate change and One Health

Climate change, driven by the industrial revolution, which advanced human civilisation at the cost of an unprecedented rise in the average global temperature, is among the foremost global health and sustainability challenges of the 21st century.^{127–129} Despite political and scientific will,^{130–132} current indicators suggest that contemporary decarbonisation pledges will fall far short of adequately mitigating climate change and the serious global health and sustainability challenges it generates.¹²⁹

The drivers of climate change prominently include the greenhouse gas emissions that result from the burning of fossil fuels and related industrial processes; energy intensity associated with current consumption and production trends; and agriculture, deforestation, and other land use changes.^{133,134} Furthermore, climate change, pollution, and biodiversity loss compound and exacerbate one another, constituting what is known as a triple planetary crisis.⁸⁸ For example, rising temperatures can enhance the toxicity of contaminants, thus increasing the burden of disease and other negative effects associated with air, water, and soil pollution,¹³⁵ and air pollutants—in particular the so-called short-lived climate pollutants, including methane, black carbon (also known as soot and part of fine particulate matter), and some hydrofluorocarbons—have considerable global warming potential.¹²⁶ Climate change affects pathogens and vectors, which in turn affect infectious disease epidemiology.^{136–138} Warm climates promote the survival and fast lifecycle completion of vectors, such as mosquitoes and ticks,^{127,139} and an increase in foodborne parasitic infections.¹⁴⁰ Climate change might also alter the geographical range and incubation period of such vectors,¹⁴¹ thus increasing the risk of associated diseases. Recurrent airway obstruction has also been shown to worsen in horses with high temperature,¹⁴² and climate change has been associated with an increase in the global prevalence of some chronic diseases, such as cardiovascular diseases and asthma,¹⁴³ as well as nephropathies associated with heat stress, which are occurring at epidemic rates in increasingly hot regions of the world.^{144,145} Climate change has also been suggested to exacerbate antimicrobial resistance through several mechanisms, including the accumulation of pollutants that cause antimicrobial resistance, particularly in soils and water, caused by runoff from increased storms and rainfall.¹⁴⁶

Global warming from climate change also detrimentally affects the health of livestock, by inducing heat and oxidative stress, metabolic disorders, and immune suppression, which lead to increased antimicrobial use in farm animals.¹⁴⁷ In some semiarid lands where livelihoods and dietary sustenance depend on livestock, droughts are responsible for mass livestock death.¹⁴⁸ Droughts exacerbate the crisis of water scarcity and can lead to conflict when nomadic pastoralists encroach on new lands in search of pasture.¹⁴⁹ Additionally, some invasive species have broad thermal tolerance. In Fiji, for example, thermoresistant invasive bee species differentially pollinate invasive plants, thus disrupting the native ecosystem balance by promoting the proliferation of harmful plant species.¹⁵⁰ Investment in climate-resilient health systems is therefore urgently needed,¹²⁸ including the integration and dynamic use of climate data in epidemiological One Health surveillance systems for infectious disease outbreaks that affect humans and other animals.^{136,141} Importantly, the deleterious effects of both climate change and climate change mitigation interventions disproportionately impact low-income countries, particularly economically,¹⁵¹ thus reinforcing the centrality of global and intergenerational equity considerations and climate justice.

harmful cycle that threatens the competitive balance among plant species, negatively altering plant biodiversity, and potentially reducing the economic yield of agroecosystems.¹²¹ Air pollution can potentially also exacerbate AMR by increasing the frequency of respiratory infections (and thus the consumption of antimicrobials by humans and other animals) and by promoting the concentration of antimicrobial-resistant genes in the air.¹²²

Indoor household air pollution is also of concern, both as a contributor to outdoor air pollution and due to its direct impact on health, with household pollution from solid fuels having caused approximately 2·8 million human deaths and 85·6 million disability-adjusted life years (DALYs) in 2015.¹²⁰ Nearly all deaths due to household air pollution occur in LMICs.¹²³ Although the impact of indoor and outdoor air pollution on animals is poorly studied, air pollution in urban settings has been suggested to increase the frequency of recurrent airway obstruction in horses.¹²⁴ In one study, household particulate matter with a diameter of less than 2·5 µm was found to be significantly higher in cats with respiratory disease than in control cats without respiratory disease.¹²⁵ Interlinked with air pollution¹²⁶ is climate change (panel 3).

1.5 Wildlife and biodiversity

Wildlife (ie, wild animals and vegetation) is crucial for healthy ecosystems and provides essential ecosystem services. However, within conventional One Health scholarship, wildlife species (and particularly wild animals) have predominantly been reduced to their role as the origin of emerging infectious diseases that threaten humans. Bats, for instance, are often vilified for harbouring pathogens of high risk for humans and other animals, but they also play an essential role in supporting healthy ecosystems as seed dispersers, pollinators, and insect population controllers. The abundance, genetic diversity, and geographical spread of bats as the second largest group of mammals after rodents is of great socioecological significance.^{152,153}

The numerous ways wildlife species matter should be appreciated more fully, especially in the advent of multiple changes that are threatening wildlife across ecosystems around the world. Of particular importance is biodiversity, which refers to the variability that exists within and between all living organisms. This biological variability is the foundation for the diverse biotic and abiotic interactions that yield and sustain functioning ecosystems and ecosystem services, such as oxygen production during photosynthesis, purification of air and water, pollination and pest control, medicine for humans and other animals, and sociocultural and psychosocial benefits, as described in more detail in section 6.¹⁵⁴ The importance of biodiversity is also seen in the interaction among microorganisms and between microorganisms, humans, other species, and the environment, with

respect to the interconnected microbiome and interrelationships between the soil and gut microbiota,^{86,98,99} as discussed in section 1.2.

Biodiversity has implications for the emergence and spread of infectious diseases, with growing evidence that biodiversity loss often increases the risk of disease transmission. The relationship between biodiversity and disease risk varies across pathogens, hosts, vectors, transmission routes, and scales (ie, genetic, microbial, organismal, community, habitat, and geographical). Some of the mechanisms through which biodiversity loss can increase disease risk include altered gene frequencies among pathogens or host populations and accompanying changes in pathogen virulence or host resistance; altered composition of microbial communities in the environment or hosts and accompanying changes in pathogen exposure, pathogen virulence, or host immune response; and altered abundance, distribution, diversity, composition, and geographical range of vectors and hosts, and accompanying changes in pathogen prevalence, host competence (ie, probability of infection and subsequent transmission of the microorganism), or contact rates between competent hosts, vectors, pathogens, and humans.^{155–157}

Given the increasingly understood relationship between biodiversity and infectious diseases, as well as the importance of biodiversity for healthy and sustainable socioecological systems at large, the current, rapid decline of biodiversity is of grave concern. Since the 1870s, the live coral cover on coral reefs has reduced by approximately half, 32 million hectares of forests in the tropics were lost between 2010 and 2015, and this past century has seen a fall of at least 20% in the average abundance of native species in most major terrestrial biomes, as well as declining vertebrate and insect populations.¹⁵⁸ Approximately 1 million species of animals and plants are currently estimated to face extinction, and the diversity of varieties and breeds of domesticated animals and plants is also declining, with consequences for the resilience of food systems.¹⁵⁸

Foremost among the drivers of biodiversity loss are changes to the use of land and the sea, as well as overexploitation of the animals and plants that they contain. Agricultural expansion constitutes the most extensive land-use change, with agriculture claiming almost half of the habitable land globally.¹⁵⁹ This expansion has entailed mass conversion of forests, wetlands, and grasslands, as well as widespread human encroachment on what was primarily wildlife habitat. Agricultural expansion has been coupled with unsustainable harvesting practices (ie, overexploitative logging, hunting, and fishing), a doubling of urban areas, and extensive infrastructure developments to support the growing human population and consumption. In addition to severe consequences for biodiversity, these activities have increased the proximity and contact that humans and domesticated animals have with wildlife,

which has increased the risk of pathogen spillover.^{160–162} Additional key and interlinked, anthropogenic drivers of biodiversity loss include climate change, pollution, and invasive alien species.

Although the drivers of biodiversity loss and the threats posed to health and sustainability throughout the socioecological system have for many years been well understood,⁶ the prevailing global strategy, including in the context of pandemics, has been largely reactive. Likewise, despite established knowledge about the essential role of environment within the socioecological system, human-driven degradation continues to threaten the plants, soil, water, and air that sustain all life. The consequences are grave and the evidence is clear: to achieve the biodiversity conservation and ecological restoration that a healthy and sustainable future presuppose, the world must embrace transformative change and “a fundamental, system-wide reorganisation across technological, economic and social factors, including paradigms, goals and values”.¹⁵⁸ One Health, including the socioecological orientation and principles of holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability embedded throughout this section of the Commission (panel 2), has an important role to play in this transformation through advancing our understanding of socioecological interconnections. An integrated, interdisciplinary, transdisciplinary, and multisectoral approach should be taken to mitigating the current socioecological crises faced and supporting healthy and sustainable socioecological inter-relations.

2. Before and beyond disease: One Health surveillance

2.1 The need for One Health surveillance

Surveillance, in the context of health, traditionally entails continuous and systematic collection, analysis, interpretation, and dissemination of health-relevant data to inform the development, implementation, and assessment of interventions and policies.^{163,164} The International Health Regulations established by WHO in 1969 required reporting of cholera, yellow fever, and plague. The revised International Health Regulations of 2005, which followed the 2002–04 severe acute respiratory syndrome outbreak, provide criteria to assist in deciding whether an event poses a substantial enough global threat to be designated a public health emergency of international concern.¹⁶⁵ The WOAH has also had a system in place for monitoring disease outbreaks in mostly domesticated animals and livestock since 1924 and, in 2005, established the World Animal Health Information System, a database for reporting and disseminating information about animal health globally.^{166,167} In 1998, the WHO Africa Regional Office initiated the Integrated Disease Surveillance and Response strategy for strengthening disease surveillance in sub-Saharan Africa.¹⁶⁸ The current Integrated Disease

Surveillance and Response technical guidelines have been in operation since 2010, with the primary goals of integrating multiple pre-existing vertical surveillance systems and linking surveillance data to public health action with a focus on human health.^{169,170}

Some health concerns, such as emerging zoonoses, AMR, and contaminants in food, soil, water, and air, require a multisectoral approach to surveillance, sometimes referred to as integrated surveillance, collaborative surveillance, or One Health surveillance. Although different definitions circulate, three fundamental features of One Health surveillance are the integration or triangulation of data from different sources (ie, human, animal, and environmental), the necessity of multisectoral collaboration, and the application of a systems-based approach.^{171–173}

The need to implement a One Health approach to surveillance for health concerns at the human–animal–environment interface is widely recognised.^{13,174–176} One Health surveillance is essential for timely and effective detection of emerging and re-emerging infectious agents. The sizeable burden of infectious diseases among humans and animals underscores the importance of well coordinated, interdisciplinary, transdisciplinary, multisectoral, and multilevel systems for collecting, analysing, and modelling data (empowered by big data and artificial intelligence), and for producing information to guide interventions.^{177,178} One Health surveillance systems can also report on and exchange information about antimicrobial-resistant infectious agents detected in various species and the environment. Averting biodiversity loss on account of invasive alien species, as well as preventing and mitigating the environmental impact of toxic pollutants on plants, animals, and humans, can be achieved via One Health surveillance.¹⁷⁹

The biological vulnerabilities shared by humans and other animals, including with regard to NCDs (as discussed in section 5), point to the opportunity to promote health among all species through a One Health approach to surveillance. For example, a study based on data from a companion animal surveillance network showed considerable similarities between humans and companion dogs in the occurrence of comorbidities related to common chronic conditions, including obesity and diabetes, as well as similarities in age-related changes in disease risk.¹⁸⁰

Within food systems, applying a One Health approach in periodic reviews of production, distribution, and consumption, and accounting for seasonal, cultural, and economic variations and dynamics, can improve efficiency and health outcomes. Surveillance can then target crucial interfaces between humans, animals, plants, and the wider environment, including those that are context-specific or easily overlooked by existing surveillance systems. For example, food safety surveillance might focus on identifying points in food

systems where risks exist for the emergence, spread, and transmission of pathogens, thereby contributing to early warning and response.

As One Health surveillance continues to evolve, important opportunities might emerge to monitor a wide range of human-mediated changes to the socioecological system and how these changes drive the emergence, spillover, and spread of infectious agents.^{160,181–185} One Health surveillance should therefore, in the future, aim to monitor not only threats, but also the wider determinants of healthy and sustainable systems.

2.2 The current state of One Health surveillance

During the COVID-19 pandemic, One Health surveillance focusing on infectious diseases at the human–animal–environment interface received increasing attention. However, the current state of One Health surveillance globally is insufficiently documented. A systematic review published in 2020 identified 41 articles describing national One Health surveillance systems, mostly in Europe, but also a few in LMICs.¹⁸⁶ Almost half of these surveillance systems involved multisectoral collaboration in varying degrees and at various stages of the surveillance process, but predominantly at the operational level, for the implementation of surveillance activities, including data collection and analysis. The coordination of surveillance was most often led by the public health sector and the primary aim of these surveillance systems was to improve human health; improvements to the health of animals and the environment remained secondary or were not among the considered outcomes. The identified systems mostly targeted the prevention of foodborne and vector-borne zoonoses, as well as AMR, with only two publications focusing on non-communicable hazards, such as environmental contaminants.¹⁸⁶ Given that very few One Health surveillance systems are reported in peer-reviewed literature, this systematic review, albeit generating important insights into the characteristics of some One Health surveillance systems, probably captured only a small proportion of existing systems.

Another systematic review from 2020 indicated that existing One Health surveillance systems were diverse in their objectives, structure, and governance, ranging from poor multisectoral collaboration for narrow purposes to complex programmes that involve multiple sectors and many points of integration.¹⁶⁴ Good examples of integrated One Health surveillance systems are those for AMR, which often integrate data on resistance to diverse drugs in bacterial species, humans, and animal species and products with data regarding antimicrobial usage in different sectors.¹⁸⁷ These AMR surveillance systems necessitate not only collaborations between multiple institutions and sectors, but also the harmonisation of data collection, complex analysis, and interpretation processes. These systems also necessitate long-term programmes to inform decision making, including

policy changes, such as restrictions on the use of some antimicrobials in some sectors (eg, the animal health sector) to protect their efficacy when used in others (eg, the human health sector).¹⁸⁸ Large-scale, event-based surveillance systems that integrate human, animal, and environmental data also exist and are continuously being improved.¹⁸⁹ The degree to which the One Health approach is implemented within these large information systems has not yet been evaluated.

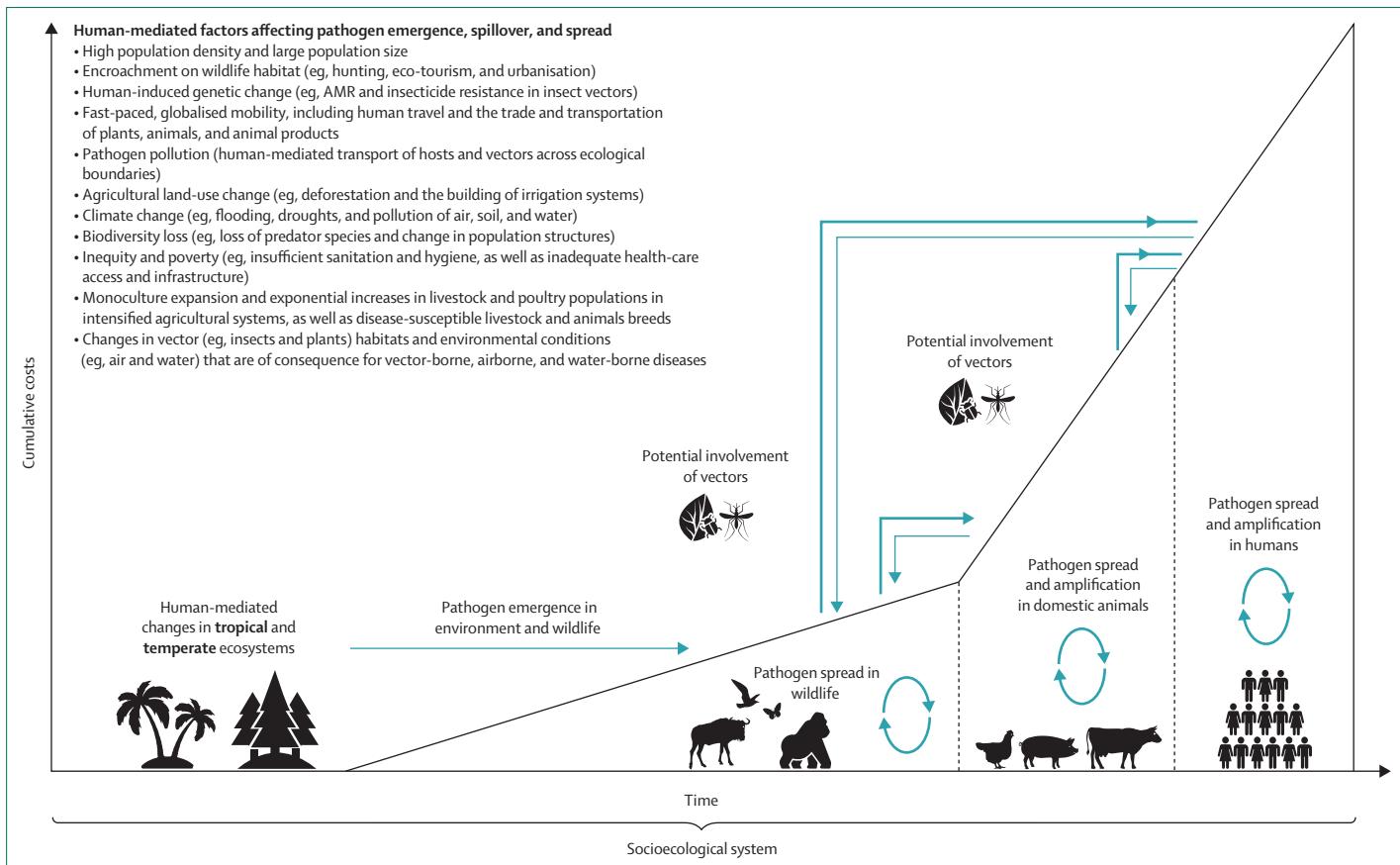
One Health surveillance that includes NCDs is, along with other barriers, hindered by the scarcity of relevant data and an underdeveloped conceptualisation, such as with regard to the links between food systems, obesity, and NCDs. In LMICs, systematic NCD data collection among humans (eg, cancer registries and risk factor surveys) is substantially less established than in HICs.¹⁹⁰ Similarly, NCD registries for companion animals exist only on a small scale.^{191–193} NCD surveillance of wildlife, livestock, and fisheries (eg, for traces of pharmaceuticals and other contaminants) does not receive sufficient attention.¹⁹⁴ Although much still needs to be done, investing in multispecies, interdisciplinary, transdisciplinary, and multisectoral NCD surveillance systems has vast potential. For example, both humans and livestock in Costa Rica, Nigeria, and several other countries are exposed to mycotoxins through ingestion of contaminated plant foods or feed.^{195,196} Exposure is associated with various NCDs, such as liver cancer in humans and reduced reproductive capacities in livestock. A One Health approach to surveillance, including surveillance for mycotoxin-associated health outcomes in humans and livestock and environmental monitoring for mycotoxins in food products, might help prevent and manage this problem.¹⁹⁵

In the previous two decades, large increases in emerging plant diseases and the consequences for crop production and food security have underscored the importance of surveillance for plant health and the need to strengthen existing plant disease surveillance systems.¹⁹⁷ Although little overlap exists between infectious agents that cause diseases in plants (phytopathogens) and those that cause diseases in humans and other animals, some chemicals and other pollutants can cause harm to all species.^{198,199} Furthermore, concern is increasing that phytopathogenic fungi, bacteria, and viruses might have a stronger impact than previously thought on the health of humans and other animals.^{200,201} Evidence of the human-mediated spread of phytopathogens on both local and global scales is overwhelming²⁰² and brings opportunities for surveillance collaborations across the human, animal, soil, water, and plant sectors, particularly given shared infrastructure and data needs.

Although not novel, the use of wastewater surveillance (ie, wastewater-based epidemiology) has become an integral part of One Health surveillance programmes, particularly during the COVID-19 pandemic.²⁰³

Researchers have proposed that One Health surveillance programmes can be designed by identifying key environmental conditions in various countries or regions and applying the principle of one sample, many analyses. This principle has been described as involving sample collection informed by the environmental setting (natural, rural, urban, or industrialised), followed by a testing regimen informed by the known health risks in and catchment area size of each setting.²⁰⁴

2.3 The performance and added value of One Health surveillance


Although the need for One Health surveillance is widely recognised, few studies have formally evaluated its added value compared with unisectoral surveillance approaches. One main challenge has been establishing direct links between the information produced by One Health surveillance systems and improved decision making for effective disease prevention and control. Nevertheless, the One Health approach provides opportunities for coordinated local, national, regional, and global disease prevention. Primordial and primary prevention, also known as upstream and midstream prevention, or collectively as deep prevention, focuses on preventing the infection or other pathological process from occurring in the first place. Secondary and tertiary prevention, also known as downstream prevention, focuses on preventing symptoms and severe disease or death.^{205–207} Once the use of the One Health approach for both deep and downstream prevention is recognised for various populations, its added value becomes more evident, particularly in complex programmes that integrate multiple sources of information, such as integrated surveillance systems for AMR and antimicrobial use.^{208,209} Importantly, some studies do report improved surveillance performance. With regard to zoonotic diseases in Guatemala, the sensitivity and representativeness of a surveillance system increased when data from multiple sources were integrated.²¹⁰ In one study from Australia, supplementing routinely collected climate data with mosquito surveillance data increased the sensitivity for the prediction of Ross River virus epidemics from 64% to 90%.²¹¹ Additionally, in Brazil, educating health agents and communities about One Health surveillance and merging previously separate zoonoses surveillance groups strongly improved the reporting of zoonoses.²¹²

One Health surveillance can also generate cost savings, both through resource sharing and through the early detection of outbreaks (including the early detection of pathogens in environmental or animal reservoirs⁶⁸), thereby enabling preventive interventions before pathogen spillover. From a public health perspective, the generally accepted assumption is that the earlier changes are detected in the presence or biology of insect and other vectors and reservoir hosts, or the earlier that a pathogen is detected in animals, food chains, or the

environment, and the better the communication is between the surveillance systems in different sectors, the more likely spillover to human populations is to be prevented or rapidly contained (or both). Consequently, larger outbreaks might be avoided and economic, social, and human costs can be minimised.²¹³ Preventing pathogen spillover to other species is also important, as pathogen spillover has consequences for biodiversity and in the agricultural and other sectors. From a socioecological perspective, One Health surveillance might also monitor a wide range of human-mediated changes to the socioecological system and how these anthropogenic changes drive the emergence, spillover, and spread of infectious agents,^{160,181–184} with attention to the different pathways through which pathogens spread and to the effects throughout the socioecological system (figure 4).

The capacity of One Health surveillance to improve early detection of pathogens before they reach the human population has been documented in several contexts. Surveillance systems integrating data on infectious agents that circulate in vectors (eg, mosquitoes), reservoir hosts (eg, birds), or sentinel species (eg, horses) have been shown to be effective in the early detection of West Nile virus and Crimean–Congo haemorrhagic fever.^{218–220} In Bolivia, coordination among workers at a wildlife sanctuary, researchers, and the Ministry of Health enabled the early detection of yellow fever in wild monkeys. This early detection mobilised a rapid multisectoral response, including human vaccination and community outreach, with no human cases reported.²²¹ In Brazil, the integration of non-human primate health monitoring in yellow fever outbreak prevention is well established and informs human vaccination programmes.²²² Although a reduction in yellow fever outbreak size was documented in Brazil, the associated cost savings due to early detection stemming from One Health surveillance are not known.

Evidence regarding the value of One Health surveillance, including its costs and benefits, is scarce, due to a paucity of studies on the topic and challenges in study design. One cost–benefit study calculated direct financial savings of more than €160 000 from 2009 to 2015 in one Italian region when conducting integrated surveillance for West Nile virus in mosquitos, wild birds, horses, and humans, as compared with surveillance in humans only.²²³ Conversely, another study on the economics of *Campylobacter* spp surveillance in Switzerland found an increase in costs associated with mitigation activities for 5 years following the implementation of surveillance activities in the poultry sector, with no disease burden reduction among humans.²²⁴ Studies assessing the economic value of One Health surveillance have largely focused on health improvement in human populations. Increased understanding is needed in terms of the costs and benefits of this approach, especially with regard to the

Figure 4: An example of pathogen emergence in the environment and wildlife, spillover, and spread throughout the socioecological system

The more extensively infections spread throughout the socioecological system, the higher the cumulative societal cost.²¹³ A One Health approach to early detection and intervention is indispensable for preventing the wide spread of infections.²¹⁴ As One Health surveillance continues to evolve, important opportunities might arise to monitor a wide range of human-mediated changes to the socioecological system and how these anthropogenic drivers pose risks for infectious disease emergence, pathogen spillover, and spread.^{160,181-184} Pathogens can emerge in wildlife and transmit to humans through direct contact or insect vectors. Other infectious diseases can spread from wildlife to domestic animals, who then transmit to humans through direct contact or insect vectors.²¹⁵ Although public health concerns commonly focus on the transmission of pathogens from animals to humans (thick arrows), reverse transmission from humans to animals can also occur (thin arrows).²¹⁶ Adapted and expanded from Karesh and colleagues, the World Bank, and the National Research Council Committee on Achieving Sustainable Global Capacity for Surveillance and Response to Emerging Diseases of Zoonotic Origin.^{51,214,217}

health of animal populations and the preservation of ecosystems. Intrinsically, the aim of One Health surveillance is to reduce the risk of pathogen emergence, spillover, and spread in ways that yield the highest overall co-benefits with, and the least negative consequences for, other health and sustainability objectives.^{225,226} As illustrated throughout this section, the co-benefits and trade-offs of implementing One Health surveillance vary across contexts, geography, and time scales, which underscores the need for consensus around priorities that is guided by the principles outlined in our One Health ethos (panel 2).

Finally, applying a One Health approach to surveillance also leads to important long-term and potentially intangible benefits, such as the growth of social and intellectual capacity²²⁴ and increased sustainability and resilience of national or regional mitigation systems due to enhanced multisectoral collaboration and the existence of multisectoral networks of professionals.¹⁷² Evaluations

of the added value of One Health surveillance should therefore look beyond monetary benefits or averted human diseases, taking a whole-of-society and socioecological perspective that accounts for and values wider societal and socioecological costs and benefits (see section 6.5 for an overview of economic frameworks that might be appropriate for evaluating the One Health approach). Furthermore, to guarantee more tangible added value, establishing clear steps for developing and operationalising One Health surveillance systems is crucial, including clarity around required roles and responsibilities, as well as expertise and capacities. The OHHLEP has suggested six steps to overcome barriers and to optimise an integrated One Health surveillance system: develop the surveillance system scope, identify the data requirements, develop the system design, develop the governance of the system, develop integrated protocols, and develop a joint implementation road map.²²⁷

2.4 Barriers to and facilitators of One Health surveillance

At both the systems and operational levels, barriers to and facilitators of One Health surveillance can be recognised. Barriers include the dearth of investigations into the value of One Health surveillance, from which follows an insufficient evidence base, little awareness of the importance of One Health surveillance, and the absence of a designated One Health surveillance workforce and operational capacity. Barriers also include poor adoption of the One Health approach to diagnostics (including shared laboratories as discussed in section 6) and the various challenges associated with the management and implementation of interdisciplinary, transdisciplinary, and multisectoral programmes in general, including communication challenges, differences in priorities, and siloed governance and funding schemes.^{171,228,229} These barriers inhibit not only the collaborative operations that underpin One Health surveillance, but also the mechanisms and platforms for reporting findings and uptake among decision makers.

Moreover, One Health surveillance is impeded by challenges related to the sharing and integration or triangulation of data that has been collected (although not necessarily synchronously) in different sectors. First, the availability and quality of data can vary greatly across sectors. For example, infectious disease surveillance among humans and livestock is better organised than large-scale surveillance systems for wildlife or companion animals, due in part to the scarcity of species-specific diagnostic tests and to other limitations of wildlife disease surveillance, in which infections are often detected opportunistically and passively (eg, detection due to death).¹⁸⁹ In addition, systematically collected data for important environmental and social drivers of diseases, such as human–wildlife interactions, land use, climate change, food and water, human behaviours, poverty, and social inequality, are often not integrated holistically into health surveillance systems or even linked to other relevant data such as infectious disease surveillance data.²³⁰ Furthermore, even when high-quality data are available within individual sectors, data sharing across sectors and institutions is hindered by an absence of legal, ethical, and operational data sharing frameworks and platforms.^{171,189,231} This limited access to data across sectors was reported to be the primary barrier to implementing One Health surveillance in a survey conducted among 185 professionals from 44 countries, 148 of whom perceived One Health surveillance as beneficial, although only 90 applied it in their work.²³² Finally, even if data are shared among institutions, data harmonisation across multiple sources and formats, which is a precondition for data integration, triangulation, analysis, interpretation, and communication to decision makers, can be challenging.^{233,234}

Facilitating One Health surveillance presupposes addressing these barriers, including harnessing pre-existing frameworks for governing and funding interdisciplinary, transdisciplinary, and multisectoral

collaborations and establishing new ones when necessary; mobilising commitments among stakeholders across public and private sectors and at all levels of government and civil society (including in local communities);²³⁵ advancing the epidemiological evidence base for One Health surveillance and assessing its added value; increasing operational capacity; and addressing challenges related to data collection, sharing, integration, and triangulation, including through structured and sustainable intersectoral mechanisms.¹⁸⁶ To facilitate the implementation of One Health surveillance in Europe, the One Health European Joint Programme developed the One Health Surveillance Codex, through which resources, tools, guidance, and experiences are shared. The Codex is based on the principles of collaboration, knowledge exchange, data interoperability, and dissemination.²³⁶

In 2019, at a global level and based on a similar ethos, the then-tripartite organisations (FAO, WHO, and WOAH) and more than 100 technical experts developed the Tripartite Zoonoses Guide to inform national zoonotic disease surveillance using a One Health approach. To support operationalisation of the Tripartite Zoonoses Guide, the Multisectoral Coordination Mechanism Operational Tool, the Joint Risk Assessment Operational Tool, and the Surveillance and Information Sharing Operational Tool have been developed and can be applied independently or in tandem to support national capacity for preparedness and response while aligning with existing international policies and frameworks. The Surveillance and Information Sharing Operational Tool was designed specifically to support countries in establishing or strengthening a One Health, multisectorally coordinated surveillance and information sharing system for zoonotic diseases.²³⁷ In addition, the WHO Hub for Pandemic and Epidemic Intelligence, which was launched in 2021 in Berlin, represents a collective and collaborative intelligence endeavour with a focus on reducing inequities and developing evidence-based solutions for better preparedness through open science, partnership, and solidarity, with a strong digital emphasis.²³⁸ Moreover, the One Health Quadripartite has conducted a One Health Intelligence Scoping Study, and a One Health Intelligence System is under development.²³⁹ These initiatives underscore that, despite the barriers that persist, important progress has been made and is underway in the development of One Health surveillance.

2.5 Digital solutions for strengthening One Health surveillance

Digital tools, innovative technologies, and novel data sources have considerable potential to support the widespread implementation of One Health surveillance and to supplement traditional surveillance systems. New portable and low-cost diagnostic technologies, such as those developed during the COVID-19 pandemic,²⁴⁰ as well as point-of-care imaging, can help address insufficient access to diagnostics in many LMICs.

Non-traditional data sources, including open data, can provide important contextual information to improve understanding of surveillance data. For example, data regarding human and animal travel patterns, weather trends, and consumer behaviour can enhance understanding of public health risks across the One Health spectrum. Social media platforms are also a source of large quantities of complex data and are increasingly engaged in public health surveillance to gain insights into public perceptions of diseases and control measures, including in the context of the COVID-19 pandemic and avian influenza outbreaks.^{241,242} The availability of such comprehensive and diverse data sources points to the potential value of big data, which is already frequently used in disease surveillance.^{243,244}

Event-based surveillance draws on a wide range of sources to detect any events that have the potential to threaten public, plant, or animal health.²⁴⁵ As such events ideally need to be reported in real time, digital tools can help to enable rapid, comprehensive surveillance and can bridge the gap between the effort required for active surveillance and the sometimes porous nature of passive surveillance.²⁴⁶ The organisation Ending Pandemics, for example, is developing digital tools to facilitate community-based surveillance. One example is the AfyaData mobile app, which allows two-way communication between community members and the health system for rapid disease detection in animals and humans in Tanzania and Kenya.^{247,248} The Preventing Zoonotic Disease Emergence initiative is similarly conducting workshops with researchers, stakeholders, and community members to develop a global information system that will allow for the real-time detection of emerging zoonoses.²⁴⁹

In addition to data collection, digital tools can facilitate the data analysis process in One Health surveillance. For example, data science methods are increasingly used to combine and synthesise data that are both structured (ie, quantitative) and unstructured (ie, text, images, and video). Data science methods can also explore large datasets that cannot be manually interrogated; for example, during the COVID-19 pandemic, several countries used both primary and large secondary datasets to predict trends and the effect of both pharmaceutical and non-pharmaceutical interventions on COVID-19 symptoms.²⁵⁰ The Norwegian early-warning system Sykdomspulsen (which translates to disease pulse in English) exemplifies the potential for and value of innovation, serving as a real-time One Health surveillance system comprising data from humans, animals, and farms, as well as diagnostic codes from doctor appointments and weather data, with the aim of forecasting outbreaks.²⁵¹

In conclusion, digital tools, innovative technologies, and novel data sources have the potential to facilitate the implementation of One Health surveillance in important ways. Although the persisting barriers to One Health surveillance need addressing, One Health surveillance is

Panel 4: Innovative One Health surveillance in the food system

A One Health approach to surveillance in the food system is essential for targeting the crucial interfaces among humans, animals, plants, and the wider environment where health risks emerge. Given the complexity of food systems, identifying the specific risks that One Health surveillance should address is important.

A One Health approach can help improve existing surveillance practices in food systems by encouraging a wider perspective that encompasses both the natural and social sciences and accounts for issues that sustain or perpetuate inequity, negatively affect livelihoods, and accentuate vulnerability.²⁵² Such a One Health approach can help produce robust risk assessments to inform actions and regulations, rather than basing these actions and regulations on practices perceived as hazardous.²⁵³ One example of how this can be approached is offered by Béné and colleagues, who propose computing aggregate or composite sustainability scores that encompass environmental, economic, social, and food and nutrition dimensions, which can be tracked over time and used to produce national sustainability maps.²⁵⁴ However, the proposed 27 indicators do not include animal-related concerns, such as animal welfare, and they have a strong focus on agriculture-related and consumer-related indicators, as opposed to wider food-system metrics.

Innovation and progress in data science and digital methods bring many opportunities for data systems that support health-related surveillance, sustainability monitoring, and interventions in the food system. For example, the potential of blockchain technology in the contexts of traceability, transparency,²⁵⁵ and the public health field²⁵⁶ could offer One Health-aligned, innovative, safe, and transparent ways of sharing information across food systems. In addition to tracing relevant production information and enabling consumer choice, blockchain technology could help build trust and ensure authenticity. Advances in machine learning can also be used to predict consumer behaviour for purposes of forecasting demand more accurately,²⁵⁷ and digital nudges can help personalise food choices,²⁵⁸ which could promote more sustainable eating. Technologies such as whole-genome sequencing²⁵⁹ and blockchain²⁶⁰ are being applied to accelerate the tracing of foodborne pathogen sources for appropriate intervention. Radiofrequency identification technologies for livestock management and meat supply-chain traceability have been applied to improve food safety and security.²⁶¹ Although these technologies hold considerable potential, they might only be marginally relevant, if relevant at all, for informal food systems.

Diverse digital tools in the form of apps and platforms have sprung up over a short period of time and have revolutionised activities, some of which might also be useful for surveillance purposes.²⁶² For example, the One Health AfyaData App uses mobile technology to enable users to engage with infectious disease detection in their communities, thereby keeping their animals safe and reducing the risk of spreading zoonotic pathogens to humans.²⁴⁷

In summary, future One Health-oriented food system surveillance is expected to incorporate composite indicators that capture the multiple outcomes that food systems generate, both positive and negative, in line with agreed national, regional, and global targets, and facilitated by new digital technologies and tools that enable easier, more transparent, accessible, and decentralised information exchange.

evolving and advancing, with future outlooks that include an expanding array of possibilities for supporting healthy and sustainable socioecological systems (panel 4). A synthesis of key messages and gaps related to One Health surveillance is presented in the appendix (p 2).

See Online for appendix

3. Infectious diseases

Traditionally, infectious diseases have constituted a primary domain of One Health scholarship and

intervention. Although the purview of One Health is expanding, infectious diseases prevail as a central concern, especially in the wake of the COVID-19 pandemic, which has made clear the need to strengthen global health security by improving pandemic prevention and preparedness.²⁶³ Nevertheless, infectious diseases constitute more than pandemics. Engaging the One Health ethos (panel 2) and socioecologically oriented One Health perspective (section 1) advanced by this Commission sheds light on the complexities of infectious diseases, including the drivers of pathogen emergence, spillover, and spread, and the impact of infectious diseases throughout the socioecological system. One Health offers an invaluable, interdisciplinary, transdisciplinary, multisectoral, and socially and ecologically responsible approach to infectious disease prevention, detection, preparedness, and response.

3.1 Diseases shared between animals and humans (zoonoses)

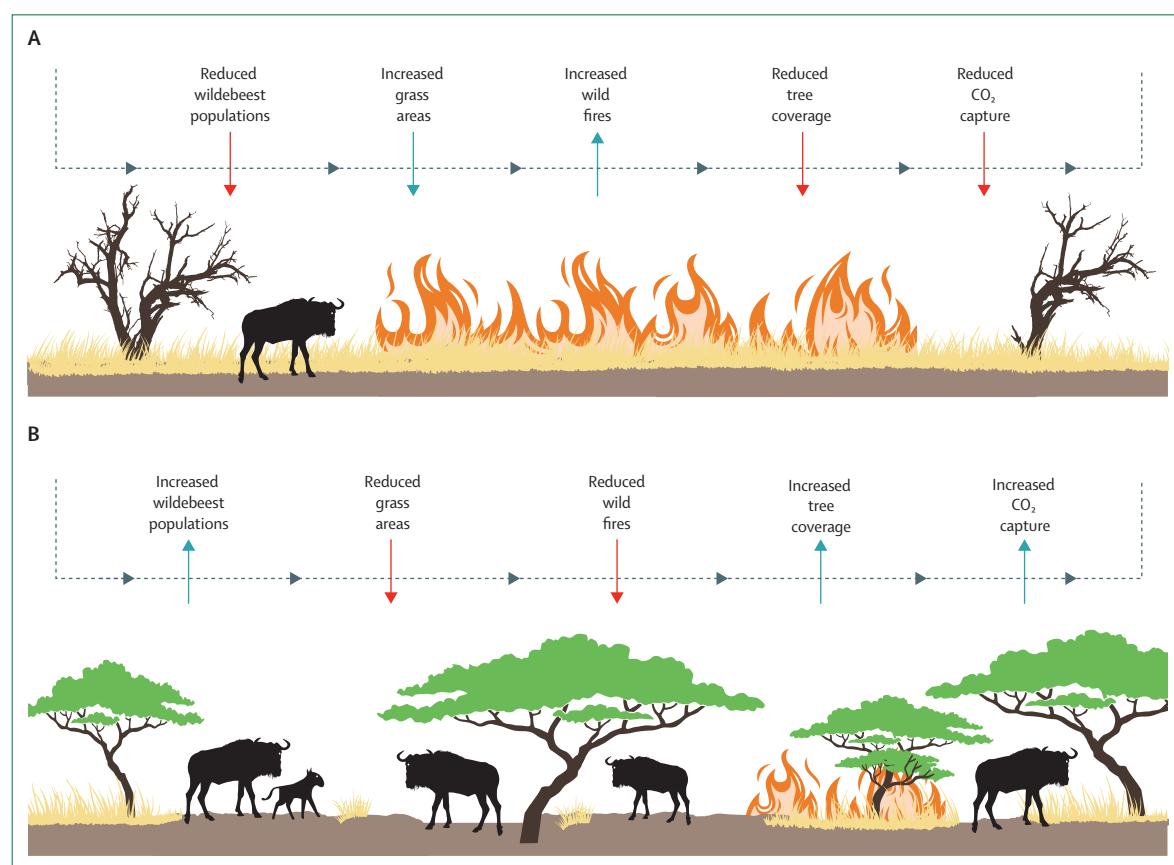
In 2001, 868 (61%) of the 1415 species of infectious organisms known to be pathogenic to humans were zoonotic (ie, transmitted between humans and other animal species).²⁶⁴ In 2020, more than 70% of more than 400 emerging infectious diseases were of zoonotic origin, according to an IPBES report.¹⁶⁰ A study published in 2021 found food production animals to be primary hosts or amplifiers for 74 (37%) of 202 zoonotic, emerging infectious disease events.²⁶⁵ Importantly, the transmission of zoonoses often extends far beyond the transmission of a pathogen from a single animal host to a human. Approximately 77% of pathogens that infect livestock and 91% of pathogens that infect domestic carnivores infect more than one other species.²⁶⁶ Research published in 2021 suggests that pathogen host ranges are poorly understood, and although many of these pathogens show capacity for interspecies transmission, they often become recognised as important only when they threaten privileged human populations.²⁶⁷ An example is the outbreak of mpox, which was identified in many parts of Africa more than a decade ago, but has only received global attention in the past few years following its emergence in Europe and North America.^{268,269}

The insufficient attention and resource allocation for disease prevention and control in under-privileged populations, and the disproportionate focus on biomedical countermeasures and other forms of support as opposed to a One Health approach, are of central concern regarding neglected tropical diseases (NTDs).^{270,271} NTDs are a group of preventable diseases that predominantly and persistently affect communities experiencing poverty, with especially pronounced vulnerability among women and children. These diseases are often chronic and result in substantial morbidity and severe social and economic consequences. Although mortality from NTDs is not as high as from diseases that attract more global attention, such as AIDS, tuberculosis,

or malaria, the disease burden that they present is just as important. Most NTDs are zoonotic and parasitic or bacterial, including many that are vector-borne.¹⁷⁵ Due to the complex interactions between humans, other animals (including insects), and the environment that characterise most NTDs, successfully meeting the targets of the NTD Road Map 2021–30 will not be possible without a One Health approach, as recognised in the WHO One Health companion to the NTD Road Map.²⁷²

Several anthropogenic drivers of pathogen emergence, spillover, and spread are recognised, including climate change, biodiversity loss, increased contact between humans and other animals due to habitat encroachment (due to agriculture, deforestation, and other land use change), and global trade.^{273–275} Some infectious agents that were believed to be primarily transmitted among humans, with or without vector involvement, are now being shown to have a zoonotic component. For example, evidence increasingly suggests that cattle might be playing a role in the epidemiology of *Schistosoma haematobium*, a schistosome believed to infect only humans, through hybridisation between *Schistosoma bovis*, a schistosome known to infect cattle, and *S haematobium*.^{276,277} Likewise, *Ascaris suum* in pigs and *Ascaris lumbricoides* in humans have also been shown to cross-transmit and hybridise.²⁷⁸ A One Health approach to Guinea worm eradication at an earlier point could have prevented domestic dogs from emerging as a reservoir of Guinea worm infection, even though the disease has been nearly eradicated from human populations.²⁷⁹

Concerns about cross-species pathogen transmission are compounded by the fact that infectious agents evolve, which could enable them to spread more efficiently between hosts. For example, SARS-CoV-2 is largely thought to be of bat origin,^{280,281} having spilled over into human and other animal populations due to anthropogenic practices, including wildlife trade and markets.^{181,282} Several new variants have evolved in the human population, but the virus has also been transmitted to a wide variety of animals, including cats, non-human primates, hamsters, ferrets, and mink.²⁸³ Infected mink have been shown to transmit SARS-CoV-2 back to humans, causing concern that potential mutations in infected animals could reach the human population.²⁸⁴ However, beyond interspecies transmission, pathogens also evolve through codivergent events. Molecular studies have shown that divergence between herpes simplex viruses in great apes and herpes simplex virus 1 in humans is probably representative of a codivergence event between gorillas and humans (meaning that the virus mutated as its original host evolved into new species). Other findings are suggestive of more cross-species transmission events in the past 3 million years.²⁸⁵ Research also shows that the measles virus diverged from the rinderpest virus, a cattle pathogen, and potentially emerged following spillovers from cattle to humans during the domestication process as early as the 6th century BCE.²⁸⁶


3.2 Non-zoonotic infectious animal diseases

With the world now highly sensitised to epidemics and pandemics brought about by spillover of animal pathogens to humans, the scope of One Health should not be limited to zoonoses. Several non-zoonotic infectious animal diseases are of substantial concern because of their effect on the health of livestock, wildlife, aquatic species, companion animals, and insects, in addition to their effect on biodiversity and plant health, international food systems and trade, access to high-quality nutrition, antimicrobial use, livelihoods, and economic development.²⁸⁷

The conceptualisation of emerging infectious diseases (ie, infectious diseases that have newly appeared in a population or that have existed but are rapidly increasing in incidence or geographical range²⁸⁸) common in the medical and veterinary fields could be extended to plants, allowing for the analysis of factors involved in emergence, as well as of the overall effect on biodiversity and the wellbeing of humans and other animals.²⁸⁹ Findings

from a 2004 study²⁸⁹ showed the differences and similarities between the groups of pathogens causing emerging infectious diseases and between the drivers of disease emergence among plants, humans, and wildlife. Viruses were found to be the most common agent and to cause a similar proportion of disease across all species. Bacteria caused a much lower proportion of emerging infectious diseases in plants than fungi caused, with the trend reversed for emerging infectious diseases in humans, in whom fungi caused a slightly lower proportion of emerging infectious diseases compared with wildlife. In terms of the drivers of disease emergence, pathogen introduction is the most important driver of emerging infectious diseases in plants and wildlife, which prompts consideration of the effect of globalised trade on the frequency of disease events in these populations.²⁸⁹

Non-zoonotic infections among plants and animals (including insects) directly affect production metrics, human livelihoods, and health. Examples of potential

Figure 5: A disease-mediated trophic cascade in the Serengeti National Park in Tanzania

In an ecosystem in which humans, other animals (including insects), plants, and pathogens continuously interface, changes have the potential to trigger powerful systemic disturbances, which are often called trophic cascades. Although most trophic cascades originate with predators (ie, top-down cascades), plants, phytoplankton, zooplankton, and even pathogens can also be triggers (ie, bottom-up cascades). A well known example of an infection-mediated trophic cascade with strong links to the health of animals and the environment has been described in the Serengeti National Park in Tanzania.³¹⁰ The two images depict (A) the scenario observed while rinderpest (caused by the morbillivirus) was present among wildebeest in the Serengeti National Park in Tanzania, and (B) the situation after rinderpest vaccination and eradication campaigns among cattle. Ultimately, by altering the carbon dioxide concentrations in the soil and biomass, this cascade was of importance for climate change as well. This figure was produced using data from works by Dobson and by Holdo and colleagues.^{310,311}

areas of impact include the yield, quality, and safety of saleable meat, fish, milk, vegetables, fruits, crops, and eggs; feed conversion and growth; honey and wax production in food, cosmetic, and other industries; clothing production based on insects and animals, such as silkworms, sheep, and South American camelids; and animal-supported work, such as the use of donkeys, horses, cattle, llamas, camels, and dogs in agriculture, transportation, security, and diagnostics.^{290–294} The costs associated with animal and plant diseases and their effect on human wellbeing, livelihoods, and national economies have not been adequately explored and require more investigation.^{295–299}

Foot-and-mouth disease (FMD), which is widespread globally and endemic in several parts of Asia and in most of Africa and the Middle East, is a serious viral disease that predominantly affects cloven-hoofed animals and provides an example of the important human health and economic ramifications of animal disease. Although FMD has been documented as transmissible to humans and hence could be classified as a zoonotic disease, it infects humans with great difficulty and with little clinical effect.³⁰⁰ Although the disease does not cause high mortality rates in adult animals, FMD has the potential to rapidly infect numerous livestock and wildlife species, and morbidity can approach 100% in susceptible animal populations.^{301,302} Thus, severe economic losses due to FMD outbreaks can quickly affect families with subsistence farms and animals.³⁰³ Both the diagnostics and mitigation measures involved in containing FMD outbreaks, including culling, quarantine, and mass vaccination, demand considerable resources and have substantial national and international economic implications.³⁰⁴ Factors that inform decisions on mass culling differ from country to country. For example, nations with large export markets might, in response to outbreaks, conduct mass culling (ie, stamping out), as the associated costs (including compensation) are likely to be dwarfed by trade impacts.³⁰⁵ However, resistance to mass culling on sociocultural grounds (ie, implications for farmer livelihoods, wastage, environmental concerns about carcass disposal, and ethical considerations, including for animal welfare) is driving the evaluation of alternative approaches.^{306,307}

3.3 Pandemics and panzootics

Epizootics and panzootics are the animal equivalent to epidemics and pandemics in humans, with panzootics defined as infectious disease outbreaks in animals that spread across large regions, as occurred with rinderpest in the 18th century.³⁰⁸ Rinderpest provides a powerful example of the health and economic impacts of panzootics. When the Italian colonisers brought Zebu cattle from India to Ethiopia, they introduced rinderpest to Africa, leading to the decimation of cattle populations along the east coast towards South Africa. More than 90% of African cattle and innumerable wildlife

perished.³⁰⁹ The consequence was massive famine and death among large human populations when the draught animals needed for ploughing were no longer available and cereal production collapsed.³⁰⁹

The eradication of rinderpest benefitted not only human economies, but also the ecosystem at large, via the well known trophic cascade in the Serengeti National Park in Tanzania (figure 5).³¹⁰ Specifically, the eradication of rinderpest from the cattle population permitted the wildebeest population to substantially increase, which led to a decline in the frequency of fires, due to increased grazing, a resulting overall reduction in grassy terrain, and a marked increase in tree density. Together with the increased grazing intensity of the wildebeest and reduced fires, this increase in tree density might have shifted the Serengeti from being a net source of carbon to being a net sink for carbon (ie, absorbing more carbon dioxide than releasing), with clear benefits for the local ecosystem.³¹¹ This example illustrates the multiple and complex biotic and abiotic links within an ecosystem and how important a holistic One Health perspective and systems-oriented approach can be for understanding these feedback loops.³¹²

Other examples of panzootics include an amphibian fungal disease caused by the chytrid pathogen *Batrachochytrium dendrobatidis*, which has decimated global amphibian populations at an alarming rate. More than 500 amphibian species have declined in number, and as many as 90 species have been rendered extinct due to this chytrid fungal pathogen, thus constituting a severe biodiversity crisis.³¹³ Many amphibian populations around the world were completely lost before the problem was even identified.³¹⁴ Studies have highlighted how this disease is interlinked with climate changes that are favourable for pathogen proliferation and how the disease affects microbiome–pathogen interactions, particularly in the skin microbiome of frogs, acting as a driver of bacterial community change during natural disease dynamics.^{315,316}

The prevention and management of epizootics and panzootics require far greater attention than has been granted thus far, given how closely these outbreaks are linked to global health and economic wellbeing,³¹⁷ and given the impact on the socioecological system at large. For example, although African swine fever cannot infect humans, anthropogenic forces (predominantly transportation) are perhaps one of the most notable risk factors for the spread of the disease.³¹⁸ Due to its ability to kill up to 100% of the pigs on a farm,^{319,320} African swine fever seriously threatens the global pork industry, which was estimated to be valued at US\$434·35 billion in 2025.³²¹ China was home to half of the world's domestic pig population in 2018,³²² but the onset of the African swine fever panzootic in 2018 resulted in the demise of more than 40% of their national pig population and more than \$140 billion in losses at the beginning of 2020.^{323,324} A synthesis of key messages and gaps related to infectious diseases and One Health is presented in the appendix (p 3).

4. AMR

4.1 Introduction to One Health and AMR

AMR is recognised by WHO as a global health threat,³²⁵ meaning that WHO calls for urgent and prioritised actions on multiple fronts by governments, industry, research funders, and other relevant actors, as summarised in the report from the UK Government-commissioned independent review on AMR in collaboration with the Wellcome Trust.³²⁶ AMR has been explored in detail by the *Lancet Infectious Diseases* Commission on AMR, and the updated report published in 2020 provided valuable data synthesis, summarised national and international actions, identified AMR trends in human and veterinary settings, and flagged important knowledge gaps.³²⁷ In addition, a systematic analysis conducted in 2019 estimated that AMR was associated with nearly 5 million deaths that year, of which 1·27 million (25·4%) were directly attributable to bacterial AMR.³²⁸ Thus, our focus in this Commission lies specifically on the One Health aspects of AMR not fully covered in previous scholarship and on synthesising the evidence from the most recent genomics studies.

Possibilities to study rates and routes of transmission of bacterial pathogens and AMR across different hosts were substantially improved after the introduction of bacterial population genomics, as shown in 2010 in one of the earliest studies illustrating intercontinental and hospital transmission of methicillin-resistant *Staphylococcus aureus* (MRSA).³²⁹ Genome-scale information is typically a necessity for any robust investigation of the timeline and routes of transmission of bacteria, due to slowly accumulating mutations that make it difficult to draw reliable conclusions from studies using marker gene-based approaches. In addition, phylodynamic analysis based on genome-scale information can reveal the origin of particular AMR clones and inform investigators about which ecological conditions facilitated their emergence and spread.³³⁰ In a short time period, bacterial population genomics has already challenged many established ideas concerning both routes of pathogen transmission (such as the discovery of human movement-mediated cholera epidemics³³¹) and the emergence of methicillin resistance in *S aureus*, before the clinical use of methicillin as a byproduct of much earlier emerged penicillin resistance.³³² Specifically, emergence of methicillin resistance in *S aureus* has been shown to have come about as a co-adaptation to dermatophyte-infected hedgehogs, which, in turn, became a vector host for zoonotic introductions, including transmission to livestock and humans.³³³ This scenario reflects why the One Health approach to understanding AMR beyond antibiotic use is crucial.

4.2 Bacterial pathogens within the contexts of One Health and AMR

To enable a synthesis of acquired knowledge about the transmission rates of bacteria across different host types within the contexts of One Health and AMR, we searched PubMed for original population genomic studies

published between Jan 1, 2015, and June 5, 2020. We focused on the critical-priority and high-priority bacterial pathogens, as classified by WHO in 2017.³²⁵ In addition, in a separate survey, articles of relevance for One Health and AMR were identified,^{334–336} and important population genomic studies that were potentially missing from the original survey output were sourced by final expert screening. The review was subsequently extended with relevant studies selectively added up to Jan 31, 2024, to capture any advancements made in population genomic studies in LMICs. The PubMed search criteria are listed in the appendix (pp 8–15).

To summarise the pathogen inclusion and exclusion criteria, *Helicobacter pylori* and *Neisseria gonorrhoeae* were excluded as strictly human pathogens. In the interest of scrutinising the highest-priority pathogens only, *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Shigella* spp were excluded as both medium priority and mainly human pathogens. The included bacteria are therefore *Enterococcus faecium*, *S aureus*, *Campylobacter* spp, *Salmonella* spp, *Acinetobacter baumannii*, *Pseudomonas aeruginosa*, and *Enterobacteriaceae* (ie, extended-spectrum β-lactamase-producing, carbapenem-resistant, and third generation cephalosporin-resistant organisms within *Klebsiella pneumonia* and *Escherichia coli*). The included high-priority pathogens have shown pathogenic potential across a wide range of hosts, including not only humans, but also both wild and domesticated animals, in addition to having environmental reservoirs. The emergence of extensively high-throughput whole-genome sequencing-based methods has greatly facilitated the investigation of bacterial pathogen transmissions between different hosts and distant geographical locations, even up to a global scale.³³⁴

4.3 A One Health approach to combating AMR: one size does not fit all

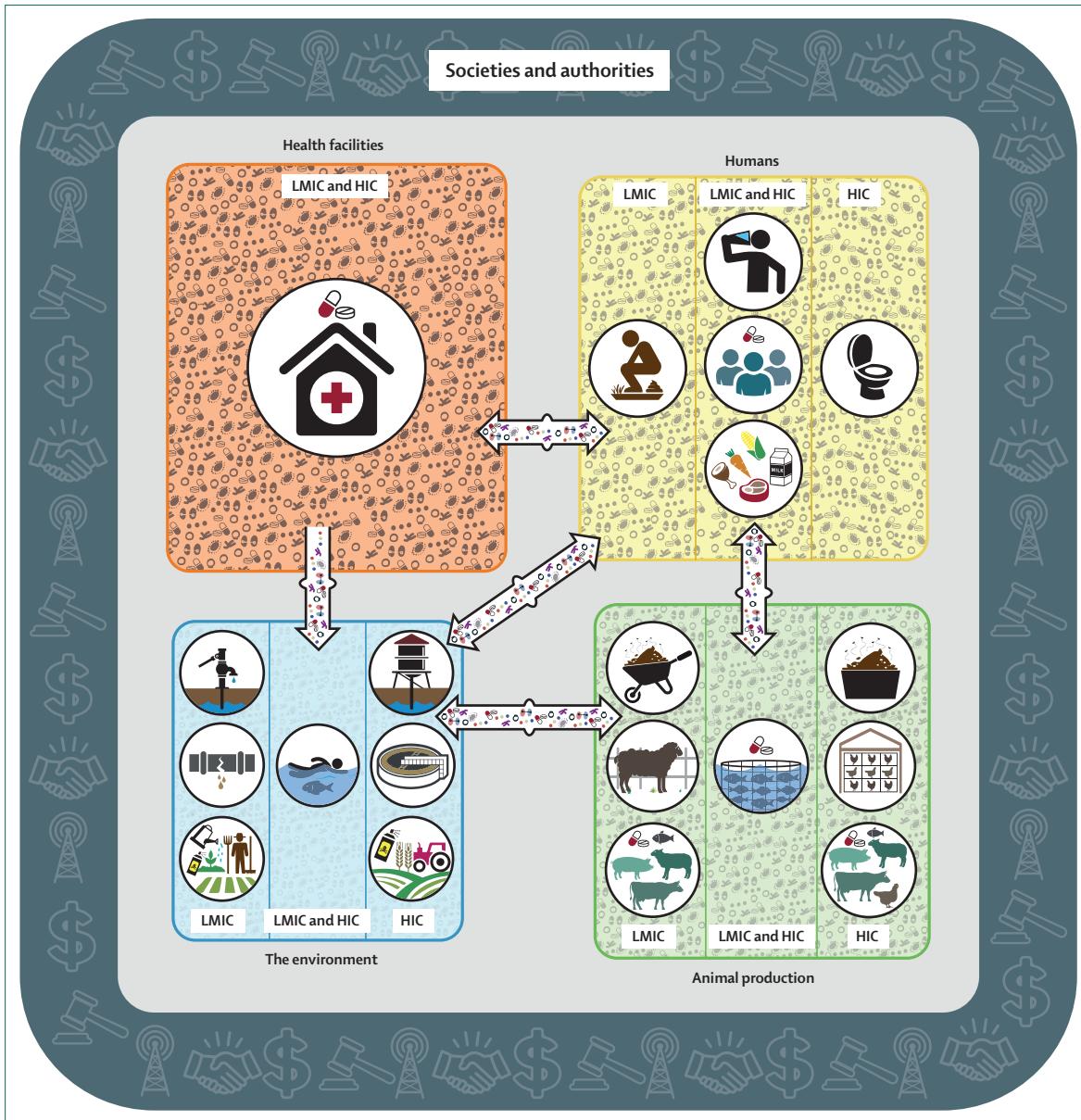
The evidence synthesis from our review (appendix pp 8–15) strongly points to the generic conclusion that dissemination of pathogenic antimicrobial-resistant bacteria from the environment and food production chains into the human population is controlled by both ecological opportunity and sustained transmission pressure. In the highly regulated and controlled food production and water systems typical in HICs, an increasing body of evidence suggests that such dissemination tends to be rare. Hence, the main drivers of resistance in the human and animal populations in HICs are the human and veterinary use of antibiotics, which act in parallel in their target populations. For some multidrug-resistant pathogen species, successful transmission and subsequent host adaptation to humans has happened slowly. Such events, even when rare, could have considerable long-term consequences in terms of infection and AMR burden. Evidence overwhelmingly supports the conclusion that hospital-adapted clones circulating among patients are the primary drivers of the

Panel 5: Case study on the success of One Health surveillance systems for eradicating livestock-associated methicillin-resistant *Staphylococcus aureus*

Methicillin-resistant *Staphylococcus aureus* (MRSA) has become increasingly linked to morbidity, mortality, and health-care costs in the past few decades.³³⁷ The main route of MRSA transmission is between humans, but extensive evidence shows occasional transmission between humans and other animals, followed by onward spread in either population—which therefore has implications for both human and animal health.³³⁸⁻³⁴¹ Norway, Denmark, and the Netherlands share similar MRSA mitigation policies and a corresponding low burden of MRSA in their human populations. Individuals with suspected bacterial colonisation are screened upon admission to health-care facilities and kept in isolation until the test results become available.³⁴²⁻³⁴⁴

However, the same countries differ substantially in their strategies for mitigating livestock-associated MRSA, which results in different colonisation and disease incidence rates and has implications for potential spillover to the human population. Since 2014, Norway has conducted yearly active surveillance of MRSA in pig populations with the objective of contact tracing and eradication.³⁴⁵ This surveillance, combined with the negligible import of live pigs, has resulted in a livestock-associated MRSA-free pig population in Norway. The Danish strategy to reduce the burden of livestock-associated MRSA was launched in 2010 and has targeted the reduction of antibiotic use on farms.³⁴⁶ This strategy does not involve eradication of livestock-associated MRSA-positive herds and, despite a substantial reduction in antibiotic use, a survey from 2016 found a livestock-associated MRSA prevalence of 88% in finisher herds.^{347,348} In 2010, the Dutch government launched a plan to reduce antibiotic use in industrial farming but, in 2016, up to 99% of pigs in the Netherlands carried livestock-associated MRSA in their nares.³⁴⁹ Livestock-associated MRSA is now more prevalent than non-livestock-associated MRSA in Dutch hospitals in the southern Netherlands, where high-density industrial pig farming is common.³⁵⁰

The countries' different strategies are examples of the importance of a One Health approach to addressing antimicrobial resistance. The yearly surveillance of MRSA in food-producing animals clearly accounts for Norway's success in its efforts to keep livestock-associated MRSA out of its human population. The strategy is an excellent example of how continuous surveillance of targeted pathogens in both human and animal populations can lead to positive outcomes for animal and human health, lower the burden on health-care systems, and reduce economic losses.


AMR burden faced by health-care systems in HICs. Nevertheless, evidence also suggests that the One Health approach can be paramount for the eradication of zoonotic and anthropogenic dissemination of specific pathogens, as illustrated by the case study on the

livestock-associated MRSA in Norway and the Netherlands (panel 5). In settings with ample ecological opportunities and sustained transmission pressure, dissemination of AMR clones to the human population from the environment and food production systems can be rapid, and their circulation can become widespread, as shown by several studies (eg, the case of colistin resistance in China).³⁵¹ A wider body of evidence is now emerging from LMICs regarding the linked roles of antibiotic use in animal husbandry and human populations as drivers of frequently shared resistant bacteria between these two settings (figure 6).³⁵²⁻³⁵⁵ AMR evidence from LMICs points to the strong value of a One Health approach to surveillance and control systems, legal regulation, and interaction with policy makers in LMICs. Our review highlights remaining knowledge gaps regarding the detailed dynamics and interplay of different factors that contribute to successful AMR pathogen transmission between humans and other hosts in LMICs. The knowledge gaps we identified suggest that both governmental and intergovernmental agencies should take an active role in engaging the One Health approach in the battle against the AMR crisis in LMICs.

Although the main driver of AMR is the overuse and misuse of antimicrobials among humans and other animals,³⁵⁶ antimicrobials also accumulate in the environment. However, the environment's role in the development of AMR has received little attention despite it being of crucial importance for not only the transmission of resistant strains, but also the development of new resistance factors in pathogens, albeit rare.³⁵⁷ AMR drivers mainly found in soil and water, such as heavy metals (mainly from manufacturing and industrial practices), biocides (including formaldehyde and chlorhexidine, which are mainly used as disinfectants), nitrogen fertiliser, and microplastics, can contribute to the development of AMR via different mechanisms.^{357,358} In addition to molecular AMR processes, socioeconomic factors (including social development, poverty, and governance) seem to play an important role.³⁵⁶ The climate change crisis has also been shown to contribute to AMR.¹⁴⁶ Although drivers of AMR vary greatly between countries and regions,³⁵⁹ the potential risks remain increasingly global due to unprecedented mobility, which facilitates rapid, transnational transmission of resistant pathogens and vectors.

4.4 Adapting global efforts to address AMR using a One Health approach

The One Health approach to AMR requires a community-driven process of identifying national priorities, and these priorities then need to inform governance and interventions. In January, 2021, following recommendations made by the UN Interagency Coordination Group on AMR, prominent global leaders in science, industry, and government

Figure 6: Antimicrobial resistance transmission in LMICs and HICs

Variations in the colour and microbial backgrounds in each domain represent the varying degrees of AMR transmission, showcasing the highest levels in health facilities, the second-highest among humans, the second-lowest in the animal production industry, and the lowest in the environment. The flow of AMR transmission between these domains is conveyed by multidirectional arrows, although the modalities and rates of transmission require more investigation. The roles of legislation, civil society, the media, and economic forces are represented by the icons in the background pattern. Agroecological practices vary across countries and regions with regard to the intensity and extent of farming, land use, pest management, animal species, water sources, and available technologies. Consequently, the commonly practised yet problematic use of wastewater irrigation in LMICs, depicted by the watering can, is another potential driver of AMR in LMICs. In aquaculture practices, antibiotic use is widespread in both LMICs and HICs. However, ecological differences between the two generally imply a higher risk for AMR dissemination in LMICs. AMR=antimicrobial resistance. LMIC=low-income and middle-income country. HIC=high-income country.

were convened by the One Health Quadripartite to form the One Health Global Leaders Group on Antimicrobial Resistance.^{360,361} This collaboration aims for the creation of common goals and visions through innovative partnerships, political and multisectoral engagement, and synergy across the One Health spectrum of humans, animals, plants, food, feed, and the

environment. This initiative also aims to help strike a better balance between the security-driven agendas of HICs and the development needs across the human, animal, and environmental sectors of LMICs. In addition, the One Health Joint Plan of Action, supported in an advisory capacity by the OHHLEP, has an action track dedicated to AMR.^{53,174} The Antimicrobial

Resistance Multi-Partner Trust Fund also focuses on addressing AMR through strategic collaboration, sustainable streams of capital, and Sustainable Development Goals-focused responses that support national governments in implementing and maintaining the One Health approach.³⁶²

Both existing and new initiatives to combat AMR should emphasise comprehensive access to effective antimicrobials globally, with appropriate stewardship, community-centred approaches to national priority setting, and upscaling of investment in the most effective preventive interventions. These preventive interventions include improved infection prevention and control; water, sanitation, and hygiene; and vaccination programmes across both human and animal health systems. A synthesis of key messages and gaps related to One Health and AMR is presented in the appendix (p 4).

5. Non-communicable diseases

5.1 The One Health connection between communicable diseases and NCDs

NCDs cause more than 70% of human deaths worldwide and 80% of years lived with disability.³⁶³ Consequently, the economic implications of NCDs are considerable, with projections indicating a global cumulative cost of US\$47 trillion by 2030 for cardiovascular diseases, diabetes, mental illness, and chronic respiratory diseases.³⁶⁴

Although communicable diseases and NCDs are most commonly treated as distinct entities, the two disease types have interconnections. For example, the gut microbiota has been implicated in NCD aetiology and is often similar in people living in close proximity to one another, such as in familial and social networks,³⁶⁵ as well as among humans and pets living in the same household.³⁶⁶ NCDs might be communicable to some extent via the microbiota.³⁶⁷ Furthermore, chronic diseases can occur as a result of infectious agents. For example, in 2018, 2·2 million new cancer cases (13% of all cancer cases) were attributable to infections.³⁶⁸ By 2050, some experts have predicted that infectious agents will be a major causal factor for the majority of human cancers.³⁶⁹

Communicable diseases and NCDs share many environmental drivers, such as air pollution (as discussed in section 1.4). The social determinants of health, such as gender, education, employment status, and race, are also important drivers. Unequal and insufficient economic, social, political, and health resources have long been established as risk factors for the occurrence and negative outcomes of both communicable diseases and NCDs.^{370,371}

Similarly, anthropogenic changes to the environment (as discussed in section 1) affect the prevalence and distribution of both communicable diseases and NCDs. Many of the diseases that were previously assumed to be exclusive to humans, such as stress or eating disorders,³⁷² are now understood to also occur in animals.³⁷³ The

environmental changes that affect human NCD risk are therefore also likely to affect the NCD risk of other animals living within the same environment. All of these interconnections underscore the complex health interdependencies between humans, other animals, plants, and the wider environment, as well as the policy implications across all sectors that are important for health outcomes. Also notable is the overall need for better understanding and cooperation to help tackle the complex and growing burden of NCDs.³⁷³ Although One Health has yet to be engaged in efforts to address NCDs, the One Health approach advanced by this Commission is highly relevant.

5.2. A One Health approach to NCDs in humans, other animals, and the shared environment

One Health has historically evolved from One Medicine and comparative medicine, which focus primarily on the biological aspects of disease that are shared between humans and other animals (ie, diagnosis, treatment, and prevention). NCDs have been a focus within One Medicine and comparative medicine,³⁷⁴ but with insufficient appreciation of the interdependent relationship between the health of humans and other animals on the one hand, and that of the wider ecosystem on the other. Although NCDs have traditionally received little attention within One Health research, a socioecologically oriented One Health approach to NCDs can facilitate understanding of the complex interactions between humans, other animals, and their shared environment, including a comprehensive framework of shared risk factors and a systemic approach to health and sustainability that goes beyond biomedicine and considers the social and environmental determinants of health.⁷⁶

Humans and animals, particularly companion animals, often share a social environment, which can affect health and wellbeing. For example, a person's social network can be a risk factor for obesity, with an increased risk of obesity occurring when a close social contact becomes obese.³⁷⁵ Such influence of social ties on obesity incidence might even extend to companion animals, with recent research showcasing a close link between obesity risk for dogs and the weight status of their owners.³⁷⁶ Alternatively, dogs can act as a positive source of social support and motivation for physical activity, with research suggesting that dog owners are statistically significantly more likely to meet physical activity guidelines in comparison with people without a dog, with the benefits of increased physical activity extending to improved mental wellbeing and joint health.^{377,378}

A multitude of factors related to a person's socioeconomic environment substantially affect their risk for mental illness,³⁷⁹ and these factors are thought to have a similar effect on animal health.^{380,381} For example, areas with higher rates of violence between humans also have higher rates of animal abuse and dog fighting.³⁸²

Moreover, just as adverse childhood experiences are increasingly linked to pathology in later life, a parallel phenomenon has been found in dogs, with respect to the association between major stressors experienced as a puppy and behavioural problems, such as increased aggression and fear, later in life.³⁸³ In these ways, a One Health perspective on mental health can help us to understand the essential mechanisms underlying mental illness and the environmental factors that contribute to its occurrence in both humans and other animals.

High and extreme temperatures have been linked to acute ischaemic events.³⁸⁴ Heat stress and hyperthermia affect the nervous system in complex ways that can result in seizures, strokes, and cognitive deficits.³⁸⁵ Similarly, heat directly affects animal health and can lead to an increased incidence of metabolic disorders, oxidative stress, and immune suppression in livestock.³⁸⁶ Laboratory studies have even suggested that some animal species might have impaired cognition at high temperatures, including impaired learning, memory, and decision-making abilities.³⁸⁷ Interestingly, intense heat also affects the productive performance of dairy and beef cattle, leading to a reduction of quality in the corresponding food products. The economic loss incurred by the livestock industries due to heat stress was estimated to be US\$1.7 billion in 2003, which equated to approximately \$2.5 billion in 2021.^{388,389} Increased temperatures and unpredictable weather conditions also disrupt food production and water availability, which can lead to food insecurity, increased malnutrition, and chronic disease among humans and animals.

Humans and animals living in the same environment are often exposed to similar types and concentrations of pollution. In 2015, 21% of all human deaths resulting from cardiovascular disease, 26% of all ischaemic heart disease deaths, and 23% of all stroke deaths were directly attributable to pollution, including air pollution, water pollution, and exposure to toxic chemicals.³⁹⁰ Air pollution (primarily pollution with fine particulate matter [PM_{2.5}]) has been consistently linked to cardiovascular disease,^{390,391} chronic obstructive pulmonary disease, lung cancer,^{373,392,393} dementia, and Alzheimer's disease.³⁹⁴⁻³⁹⁶ In a 2016 report, WHO estimated that 92% of the global human population was living in areas where the ambient (ie, outdoor) PM_{2.5} concentrations exceed the recommended limit of an annual mean of 10 µg/m³.³⁹⁷ A large proportion of the non-human animal population is therefore probably living in areas of excessive exposure as well. Although the research is scarce, evidence suggests that animals are similarly affected by air pollution exposure as humans.³⁹⁸

Pollution from microplastics is another environmental challenge of great importance, with microplastics being ubiquitously present in the atmosphere; soil; food; and marine, fresh, and drinking water.³⁹⁹ Microplastics have also been implicated as environmental drivers of AMR (as discussed in section 4). Humans and other animals

can ingest microplastics through contaminated food or water.^{399,400} Extremely small particles have even been able to cause negative effects in plants and microbiota.⁴⁰⁰ Especially harmful are the chemicals that are intentionally added during plastics production, including, for example, bisphenol A and phthalates, both of which are known endocrine disruptors.³⁹⁹ Chemicals that interfere with hormone regulation are associated with an increased risk of obesity, diabetes, reproductive disorders, and some cancers. Marine mammals, for example, are now well known to be vulnerable to mammary cancers in response to the same endocrine disruptors that increase risk among female humans.^{401,402}

Another group of pollutants of great concern are PFAS (as discussed in section 1). These chemicals contain carbon-fluorine bonds, which are one of the strongest chemical bonds in organic chemistry, making them non-biodegradable.⁴⁰³ PFAS permanently pollute water and soil, and accumulate in humans and other animals via food, water, and consumer goods, but are widely used in industry and consumer products for reasons including their grease-repellent, dirt-repellent, and water-repellent effects.⁴⁰³⁻⁴⁰⁵ PFAS cause pathophysiological changes and diseases in various systems throughout life, including the immune, metabolic, circulatory, respiratory, endocrine, and reproductive systems in humans and other animals. These chemicals have been shown to cause cancer and have a pronounced effect on the nervous system in humans and other animals,^{404,405} but have been found in wildlife around the world, with uncertain health effects and consequences, including low immunity and infertility, which might also affect biodiversity.⁴⁰⁶ Measures to reduce or ban PFAS could benefit from an integrated One Health approach across systems and sectors (eg, health, environment, water, food, politics, industry, and trade). The global regulations around PFAS that are in place, mainly through the UN's Stockholm Convention and US-based provisions,^{407,408} have been criticised for lacking ambition, in part because of uneven implementation, with LMICs lagging behind.⁴⁰⁹ Global, regional, and national One Health governance (as discussed in section 8.1) is required to hold industry accountable and address the global and intergenerational inequities that are at stake in the continued production of PFAS.

5.3 Opportunities for shared solutions

The deeper understanding of the complex interconnections between humans, other animals, plants, and the wider ecosystem that One Health advances facilitates the development of interventions that improve NCD outcomes across multiple domains. For example, the One Health approach promotes environmental conservation and animal welfare and wellbeing, and advocates for agricultural practices that prioritise equity, sustainability, and health (as discussed in section 7). Healthy and sustainable ecosystems, as well

as access to safe and nutritious food, are essential for all humans and other animals and play an important role in the prevention and management of NCDs. The bonds between humans and other animals can also be a source of mutual support in the management of NCDs, such as obesity and mental disorders.⁴¹⁰ However, companion animals also contribute to biodiversity loss by preying on mammals, birds, reptiles, amphibians, and insects; transmitting diseases;^{411,412} and contributing to greenhouse gas (GHG) emissions due to their meat-based diets (as discussed in section 7.2).⁴¹³ Solutions could include avoidance of overfeeding, a transition to sustainable diets,⁴¹⁴ and population control, including

through restrictions on numbers of companion animals and the possible introduction or revision of companion animal taxes.⁴¹⁵

One Health strategies also promote sustainable urban planning and aim to mitigate climate change, improve access to clean water, and decrease air pollution by banning the burning of fossil fuels, improving public transport systems, expanding bike paths, incentivising the number of zero-emissions vehicles, and handling air travel more restrictively, among other measures. In addition to reducing GHG emissions, such strategies would automatically decrease diseases associated with air pollution and heat waves among humans and other

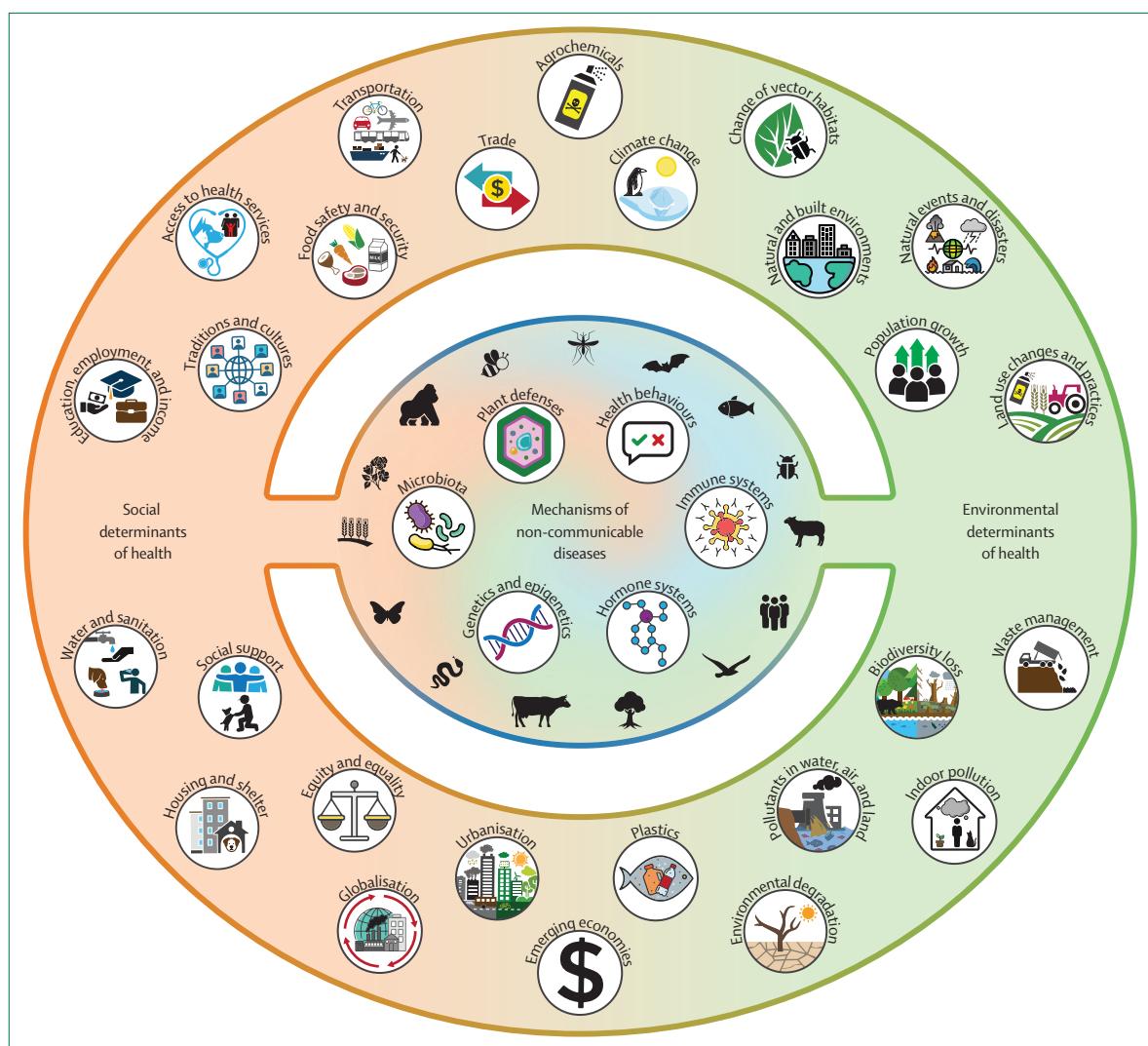


Figure 7: The One Health non-communicable disease wheel

Shared determinants affect health through particular mechanisms of health and disease. For example, exposure to air pollution is associated with increased inflammation in both animals and humans.^{398,416,422-424} Plants also have an immune system with striking similarities to that of animal species, and plants produce hormones in response to pathogens and for disease resistance.⁴²⁵⁻⁴²⁹ The social and environmental determinants of health are not separate entities, but together could be qualified as determinants of One Health.^{430,431} For example, the demands of the growing human population have led to more intensive food production systems, including the increased use of agrochemicals such as pesticides. These pesticides in turn affect the health of pollinators, biodiversity, pollination services, and crop yield.⁴³²

animals, promote health by incentivising physical activity, and contribute to social equity by improving mobility and access to economic and social opportunities.^{373,416,417} Reducing air pollution will contribute to maintaining plant diversity and improving ecosystem services, such as forest growth.^{418,419} Although such changes can be partly influenced by personal choice, policy measures, such as fuel taxation, are likely to be more effective.³⁷³

Multisectoral collaboration is also required when it comes to NCD surveillance. Global data-sharing platforms that track environmental, animal, and human health trends help to identify risks for both communicable diseases and NCDs. Integrating data from diverse sources, supported by cutting-edge technology, such as pollution monitoring, animal health surveillance, and public health records, can inform more targeted One Health interventions (as discussed in sections 2, 6.3, and 6.4). The WHO STEPwise approach to NCD risk factor surveillance provides valuable data on NCD risk factors, disease incidence, and mortality, but so far is rather anthropocentric, as animal and environmental data have not been included.⁴²⁰

International organisations such as WHO, FAO, and UNEP are increasingly collaborating to promote One Health solutions to NCDs, such as through the Global Action Plan for the Prevention and Control of NCDs (2013–30) and its Global Compact (2020–30).⁴²¹ However, policies that address AMR, environmental conservation, animal health and welfare, food safety and security, and trade regulations (as discussed in section 6.3 and 7.2) are also crucial for reducing NCDs in humans and other animals, and need to be integrated nationally, regionally, and globally (figure 7). A synthesis of key messages and gaps related to NCDs and One Health is presented in the appendix (p 5).

6. Health-promoting synergies

Many of the most pressing global health and sustainability challenges of our times, including emerging and endemic infectious diseases, AMR, NCDs, food insecurity, climate change, biodiversity loss, and pollution, demand integrated, systems-wide solutions, cooperation between multiple sectors and disciplines, and structural adjustments and shifts in global governance, economics, and ways of knowing and operating.⁶⁹ A One Health approach to interventions advances equitable, sustainable, and healthy socioecological systems through collaboration (including joint investment and resource mobilisation, programme design and evaluation, and mutual benefits) across two or more sectors and disciplines,⁴³³ resulting in added value (panel 1). A One Health approach to interventions encompasses diagnostics, vaccines, medicines, and other forms of health promotion and disease prevention and management throughout the socioecological system (as discussed in section 1).

6.1 A One Health approach to diagnostics

Screening for biological risks in humans, other animals, and the environment increasingly uses next generation sequencing (NGS), through which entire genomes of organisms or targeted regions of DNA or RNA can be sequenced.⁴³⁴ With metagenomic NGS, any genetic material present in a sample obtained from humans, other animals, or the environment can be quickly identified, which allows for a rapid determination of the sample origins and any genetic changes that might have taken place over time. The connection between biological risks to the health of humans, animals, plants, and the wider environment can thus be identified at the molecular level. Superimposing epidemiological methods in a transmission network analysis can also aid in disease surveillance, such as within the food system.^{435,436} Additionally, using findings from metagenomic NGS, identifying changes in AMR and in transmissibility, virulence, and other important properties of a pathogen as part of outbreak control and prevention becomes possible.⁴³⁶

Rapid, easy-to-use, point-of-care diagnostics used outside of laboratories (eg, using the lateral flow technique at bedside or pen-side, often on the basis of antibody or antigen detection) are in increasing demand.^{435,437,438} A growing body of research indicates the potential value of point-of-care diagnostics in multiple species and using different formats.^{437,439–443} However, multispecies and context-specific test validation and global alignment of test protocols across species and the environment are needed, with appreciation of the differing diagnostic capacities that tests can have. These capacities can be based on, for example, the parasite stage in humans and animals, as well as on the epidemiological setting, as pointed out by a review of diagnostic tools available to detect the parasite *Echinococcus multilocularis*.⁴⁴⁴ Point-of-care formats also exist for nucleic acid-based technology, such as loop-mediated isothermal assays and recombinase polymerase assays, and use of this technology is on the rise.⁴³⁷

Innovative approaches with a One Health potential include the CRISPR-Cas technology that first gained popularity because of its genome editing capacity and that has now been applied to diagnostics for infectious diseases and NCDs, such as cancer.^{445,446} In the case of SARS-CoV-2, CRISPR-Cas technology was used to develop an assay implemented on a lateral flow strip with single-base specificity for detection of emerging variants, and simultaneously multiplex, to differentiate between different viruses. Under optimal conditions, results can at times be produced within 1 h of sample input.⁴⁴⁷ Most recently, a CRISPR-Cas-based toolkit has been developed for the diagnosis of human African trypanosomiasis in humans and possibly animal reservoirs. This toolkit holds potential for One Health point-of-care diagnostics after test optimisation.⁴⁴⁸

Importantly, the added value of a One Health approach to diagnostics is relevant for not only infectious diseases, but also NCDs and environmental contaminants, such as pesticides and microplastics. In this context, animals sharing the same environment can serve as sentinels (as discussed in section 5).

Although laboratory services for humans and other animals have traditionally been separate, for historic, economic, infrastructural, and regulatory reasons, shared laboratory services also constitute a notable, integrated approach to multispecies diagnostics, especially with respect to rare, zoonotic diseases for which samples from humans and other animals need to be handled within the same biosafety level of containment. The Canadian Science Centre for Human and Animal Health was established more than 20 years ago as the first integrated biosafety level 4 laboratory, for purposes of studying the most threatening animal and human infectious agents and developing treatment and vaccines.^{449,450} Shared diagnostic capacity might also be particularly valuable during health emergencies, as shown by the rapid conversion of veterinary laboratories into COVID-19 testing facilities, which greatly contributed to comprehensive testing in the early phase of the COVID-19 pandemic.⁴⁵¹

6.2 A One Health approach to vaccines and medicines

A One Health approach to vaccines and medicines encompasses both preventive and curative interventions. This approach entails recognising the cross-species similarities that exist in the processes of developing vaccines and therapeutic agents, and exploiting the multispecies health benefits and cost savings of shared vaccines, shared medicines, and vaccinating animals against zoonotic diseases (thereby protecting the health of humans and other animals, as well as livelihoods). In most instances, preventive health interventions are more cost-effective than curative ones.⁴⁵² In the context of disease prevention, vaccines are among the most striking examples of having great One Health potential.

As early as the 1800s, cowpox was inoculated to humans to provide protection against smallpox.⁴⁵³ More recently, a Rift Valley fever vaccine was developed for use in humans and livestock.⁴⁵⁴ Although not yet tested in humans, this multispecies approach to vaccine development is expected to save time and money compared with developing separate vaccines for humans and other animals. In addition, universal vaccines can help to facilitate collaboration and resource sharing between the veterinary and public health sectors, including with respect to technological innovation.⁴⁵⁵ In addition to a multispecies approach to vaccine development, the investment in animal vaccines for the control, prevention, and elimination of zoonotic diseases in both animals and humans is an exemplar of a cost-effective One Health approach. For example, high rabies vaccine coverage in dogs has been shown to be an affordable and highly

effective intervention to prevent, control, and even eliminate dog-related human rabies in several countries.⁴⁵⁶ Notable examples exist of a One Health approach to not only prophylactic vaccines, but also therapeutic agents. Ivermectin, for example, was developed as a veterinary antifilarial agent in 1981, was licensed for human use in 1987, and is now used extensively and effectively by mass drug administration programmes among humans that target filarial infections, such as onchocerciasis, lymphatic filariasis, scabies, and strongyloidiasis.⁴⁵⁷

The development of vaccines and therapeutic agents requires substantial investment. Although estimates differ, the research and development costs of a new medicine have been estimated to range from just less than US\$1 billion to almost \$3 billion, depending on the type of medicine.^{458,459} Overall, research suggests that these research and development costs have been increasing over time.⁴⁵⁸ Developing vaccines and medicines with multispecies applicability could accordingly allow for more cost-effective vaccine production by maximising returns on investment as a result of economies of scale. In addition to the needs for increased investment and cost-effective production based on economies of scale and market sizes, more equitable production and access to health products (particularly vaccines and medicines) are needed across geographical regions and socioeconomic strata. Currently, Africa depends almost exclusively, and unsustainably, on the rest of the world for its vaccines and medicines.⁴⁶⁰

6.3 A One Health approach to holistic interventions for health promotion, disease prevention, and disease management

Vaccines and medicines are two crucial forms of One Health interventions. A One Health approach to interventions is much broader, encompassing all other forms of action to advance health throughout the socioecological system. This action includes salutogenic approaches to fostering and sustaining mutually beneficial relationships between humans, other animals, plants, and the wider environment. For example, interacting with the natural environment has been associated with a range of human health benefits, including improvements in cardiovascular and mental health outcomes.^{461,462} Research also shows a positive association between spending time in nature and pro-environmental behaviours, such as recycling and walking or cycling for short journeys.⁴⁶³ These and other interventions that protect the environment both affirm the intrinsic value of the environment and ensure that it can continue to produce the healthy water, air, and soil that sustain humans, other animals, and plants. The environment also plays a role in the assembly of the human gut microbiota (as discussed in section 1).⁹⁹ Additionally, research suggests that environmental interventions can be of positive influence for antibiotic use and AMR across species. For example,

water, sanitation, and hygiene interventions and biosecurity measures among livestock and humans have been associated with a reduced need for antibiotic use (as discussed in section 4).⁴⁶⁴

A One Health approach can also be used to design integrated interventions that target several zoonoses in humans and animals simultaneously, making them especially cost-effective and thus more sustainable than potentially more costly unisectoral approaches.^{465,466} This approach is especially important for controlling NTDs, which disproportionately affect populations that have insufficient access to essential services, including clean water and sanitation, and often rely on livestock for their livelihoods.⁶⁸ For example, an intervention in Laos that simultaneously targeted the zoonotic tapeworm (*Taenia solium*) and soil-transmitted helminths in humans and pigs, as well as the classical swine fever virus panzootic, proved far more cost-effective than programmes treating these diseases separately.^{467,468} Importantly, behavioural and socioeconomic factors, such as sanitation, hygiene, and knowledge of transmission cycles between pigs and humans, were addressed alongside the biomedical intervention,⁴⁶⁹ which can also have a positive effect on other diseases associated with poor sanitation, such as cholera.¹⁷⁷ This study underscores the importance of water, sanitation, and hygiene interventions, including the installation of toilets and latrines, that have an impact across multiple diseases, as well as the need for evaluations that show this impact.

A One Health approach to interventions can also be important for preventing and treating NCDs and for increasing wellbeing among humans and other animals, as humans and other animals often share the same environment, including its contaminants and pollutants. Any intervention that mitigates environmental contaminants and pollutants will logically improve health among humans, animals, and the ecosystem at large.³⁸¹ The same is true for lifestyle diseases, such as metabolic diseases, which affect health among humans and companion animals. As one example of a solution, joint physical exercise done by humans and their companion animals can prevent diseases and improve health for both. Other possibilities for shared NCD interventions are explored in sections 5.2 and 5.3.

A One Health approach to NCD interventions should also address plant health. Pronounced fungal growth on plants and crops, which causes diseases in plants, humans, and other animals, is an under-recognised and grossly neglected challenge in many low-income settings around the world. Mycotoxins cause crop destruction; milk, egg, and meat contamination; and organ damage, immunosuppression, and other health issues in humans and other animals. Environmental factors such as climate change, overcrowding, and insufficient sanitation and hygiene also play a role in plant health and fungal growth. A One Health approach to

interventions for plant, human, and animal health includes, for example, pre-harvest and post-harvest interventions, detoxification strategies, in-house protective practices, and a One Health governance framework.^{195,381} Due to the variety of factors that play a role on mycotoxin production, contamination will continue to vary across global regions due to the differences in regulatory measures and agricultural practices. This issue highlights the inter-relationships between food systems, agricultural practices, climate change, global trade, and veterinary and public health systems, and the necessity of a One Health approach to mitigate and prevent harmful health outcomes for plants, animals, humans, and societies—particularly in low-income economies, where the need for regulations is especially pronounced.

Importantly, no one-size-fits-all One Health approach to interventions exists. The health and economic benefits that can be expected from a One Health approach to interventions depend on, for example, the context in which the intervention will be implemented and the extent to which it is designed and implemented in context-specific ways. Both qualitative and quantitative social science research can generate insight into the social, cultural, economic, and political dynamics of local contexts and their relevance for designing and implementing interventions.^{470,471} Qualitative research can also provide key information about local perceptions of and interactions with the environment and animals, as well as about the effect of these interactions on the welfare of humans, other animals, and the environment. For example, the aforementioned qualitative study conducted during the implementation of the joint intervention against pork tapeworm (*T solium*), soil-transmitted helminths, and classical swine fever in Laos explored the social, cultural, and behavioural factors that hindered and facilitated intervention compliance. Compliance rates with the mass drug administration regimen were high, possibly due to trust between health workers and community members established over 2 years of joint participation in the project.⁴⁶⁹ If time and other resources are not invested in building trust with the community, however, factors such as misunderstandings of pharmacology, concerns regarding medication side-effects, and children's fear of intestinal worms might not be adequately addressed, which could potentially lead to decreased compliance.⁴⁷² Importantly, although compliance has conventionally been a focal point of One Health implementation research, participatory approaches to intervention design and implementation that shift the focus from community compliance to community partnership, in a truly transdisciplinary sense, provide especially valuable opportunities to engage local knowledge and resources, to align interventions with local priorities and sensitivities, and to ensure that interventions and their effects are optimised and sustainable.⁴⁷³

6.4 A One Health approach to health systems

The added value of a One Health approach to diagnostics, vaccines, medicines, and other interventions, coupled with the lessons learned from the COVID-19 pandemic (including the need for drastically strengthened health-systems resilience) call for a fundamental health-systems transformation. This transformation entails deep inclusivity, true partnership, and transdisciplinary processes of co-design and co-creation, with respect to civil society, within communities, and among vulnerable populations, including Indigenous populations. Working together is also needed across governmental ministries; public, private, and non-governmental and non-profit sectors; and civil societies and local communities, to achieve equitable, sustainable, and healthy socioecological systems.

In a One Health perspective, disease prevention and health promotion throughout the socioecological system must be on equal footing with curative medicine, and population-wide literacy in health and sustainability must be reached. This perspective presupposes that governments and human, veterinary, and environmental health authorities invest in creating and disseminating context-specific knowledge through a participatory approach.⁴⁷⁴ Also needed are collaboration among physicians, veterinarians, human and veterinary public health experts, and experts on the health of the environment (ie, One Health practitioners) to advance health and sustainability, and a narrative that truly embraces a planetary and One Health perspective and addresses the broad spectrum health and sustainability challenges currently faced.⁴⁷⁵ This perspective is fully aligned with the One Health ethos proposed by this Commission (panel 2) and the Geneva Charter for Well-being.⁴⁷⁶

The concept of One Health systems is nascent and underdeveloped.⁴⁷⁷ The WHO health-systems building blocks put forward in 2007 aim to streamline health-systems strengthening and address service delivery, health workforce, health information systems, access to essential medicines, financing, and leadership and governance. Although anthropocentric in nature, these building blocks can guide the development of the concept of One Health systems.⁴⁷⁸ In 2018, building blocks for One Health interventions were proposed in a World Bank report and share some similarities with the WHO health-systems building blocks. These building blocks address stakeholders, roles, and responsibility; financial and personnel resources; communication and information; technical infrastructure; and governance.⁴⁷⁹ Although less anthropocentric and more aligned with the One Health approach and ethos, the Word Bank building blocks refer explicitly to human, animal, and environmental public health systems and their interfaces, and have been developed in the specific context of epidemic and pandemic prevention, detection, response, and recovery. However, the building blocks clearly point to the

importance of the environment, which, together with the decarbonisation of health systems, also needs to be prioritised in the further development of the concept of One Health systems.⁴⁸⁰ Additionally, future work around the concept of One Health systems needs to be linked to other ongoing endeavours, such as the universal health coverage agenda, which is committed to “building and strengthening equitable, resilient and sustainable health systems” and aligns well with the One Health approach.⁴⁸¹

Concrete examples of what health care in a One Health system might entail can be drawn from primary health care, where health services targeting humans, animals, and the environment have been integrated successfully in some contexts. For example, a One Health clinic has emerged as an innovative health-care solution for underserved populations in Knights Landing, CA, USA. At this clinic, integrated human and animal health care has leveraged the human-animal bond and generated mutual benefits with regard to health-care access and disease prevention and treatment, including improvements to both physical and mental wellbeing.⁴⁸² Possibilities for integrating the environment into this clinic have also been suggested and indicators for the evaluation of performance have been proposed.^{482–484} The purposeful collaboration of human and veterinary health professionals within communities and clinics could also play a crucial role in identifying emerging diseases and other health threats by using animals and humans as each other’s sentinels. The interdisciplinary and transdisciplinary teaching and learning potential of combined clinics cannot be overestimated.

Undertaking a One Health-guided reconstruction of health systems depends on convincing governments and other stakeholders to do so. Therefore, key performance indicators showing One Health gains and financial savings are needed. A transformation of the global economic valuation system will also be required to allow for more equitable distribution of resources and full appreciation of the added value of the One Health approach, including with respect to mitigating climate change and biodiversity loss (as discussed in section 8.2).

6.5 Measuring the added value of a One Health approach

Ultimately, One Health aims to advance health and wellbeing throughout the socioecological system, through integrated, interdisciplinary, transdisciplinary, and multisectoral approaches that engage resources efficiently. Showing the added value of this approach is fundamental to increasing its adoption. As addressed in section 8.2, realising the One Health vision of equitable, sustainable, and healthy socioecological systems presupposes a fundamental shift in global economics.

Examples of One Health approaches that have generated added value in comparison with unisectoral approaches are currently available.^{485,486} Investments in

strengthening veterinary and human public health systems in LMICs and reducing deforestation and biodiversity loss have been suggested to provide a net cost savings through pandemic prevention, with the 10-year cost of prevention representing only about 2% of that of the COVID-19 pandemic.⁴⁸⁷ Despite these promising suggestions, reviews have indicated a paucity of standardised methods and metrics for the economic evaluation of One Health.^{485,488} Development and standardisation of appropriate evaluation frameworks and decision-making tools are therefore urgently needed.

Despite the inherent complexity in evaluating multisectoral interventions, One Health aims to consider interventions from a societal perspective, and the body of literature on which to draw is growing. In table 1, we provide an overview of five key economic evaluation frameworks that are regularly used for guiding decision making and are of relevance for One Health. Underpinning these frameworks are methods for placing monetary and non-monetary values on investments and the consequences of a course of action. In tables 2 and 3, we review several of the key metrics relevant to the core One Health domains of people, animals, and the environment. The frameworks and metrics that we discuss include social progress indicators, such as redistribution, animal welfare, human wellbeing, and the protection and promotion of biodiversity and healthy environments, which relate to economic paradigms that centre equity, sustainability, and wellbeing.

As indicated in this section, several economic evaluation frameworks and decision-support tools might be suitable for expansion and uptake to robustly show the added value of One Health. However, most of these metrics prioritise human health. Metrics that equitably account for animals and the environment are needed. Appropriate and inclusive evaluation is integral to the successful implementation of One Health. In addition to quantitative indicators of success, such as reduced incidence of disease and the use of economic evaluation frameworks, other methods through which a One Health approach to interventions has been evaluated were identified through a 2022 scoping review.²²⁹ A variety of evaluation frameworks were suggested. These frameworks focused on outcomes or process success and included a variety of quantitative or qualitative measures, such as changes in knowledge, attitudes, and practices, and One Healthiness, as assessed by the Network for Evaluation of One Health. An alternative metric that has been suggested for measuring One Health performance across different One Health domains is the Global One Health Index, a metric based on a weighted inclusion of One Health indicators retrieved from authoritative, openly available data sources.⁵¹⁹ Global One Health Index scores vary considerably by region, with the highest scores attributed to countries in North America, Europe, and Oceania, and with countries in Africa obtaining the lowest scores.⁵¹⁹ Although whether this index will be taken up at scale remains to be seen, it simulates the

Description	
CEA	CEA is a comparison of costs and benefits where costs are expressed in monetary units and benefits are expressed in non-monetary units. The summary measure is the cost-effectiveness ratio, which can be compared with preset thresholds where available. ⁴⁸⁹ CEA is predominately used in health economics, with health benefits as the effectiveness measure. ⁴⁹⁰ CEA is also used beyond the health sector and for multisectoral analysis with a variety of effectiveness measures, such as those for inequality or environmental outcomes. ^{491,492}
Social CBA	CBA is a comparison of costs and benefits expressed in monetary units to give a summary measure of net present value. Social CBA is an extension of CBA to account for social and environmental outcomes. ⁴⁹³ Where no market value is available for a particular good or service, shadow pricing techniques (placing a hypothetical value on a non-market good or service) can be used to provide a contextually appropriate value. Social CBA is a highly flexible framework, but value judgements in monetisation must be explicit and can be highly context specific. CBA is currently rejected by health technology assessment agencies in some countries (eg, the UK, France, and Germany) due to ethical concerns about placing a monetary value on human health. ^{490,494,495}
Social LCA	LCA is an assessment of environmental impacts associated with all stages of the life cycle of a product, process, or service. ⁴⁹⁶ LCA can be expanded to account for the actual and potential positive and negative social impact of these goods or services across the life cycle (social LCA). ⁴⁹⁷ Comparisons of environmental impact inventory, quantified in natural units of a good or service, can reveal the good or service with the least environmental impact. Methodologies also exist for monetising the impact inventory to generate a monetised LCA. ⁴⁹⁸ Monetised LCAs have similarities with CBA, though methodological differences exist (eg, non-use of discounting within LCAs and removing some of the methodological criticisms that environmental economists hold with CBA for discounting future benefits).
MCDA	MCDA is a systematic approach to complex decision making that is highly adaptable to multisector considerations. ⁴⁹⁹ Costs and benefits are described in non-monetary units, with stakeholder weightings applied. A variety of methodologies for MCDA exist (eg, analytic hierarchy process, multiattribute utility theory, outranking, and order of preference by similarity to the ideal solution). Non-monetised LCA has several similarities with MCDA methodologies, but the two frameworks have also been applied together, with MCDA being used to develop LCA, and MCDA being used to allow better interpretation of LCA outputs by decision makers. ⁵⁰⁰
SD modelling	SD modelling is a highly flexible modelling process to understand complex systems based on the flow of resources through a system over time and with integration of feedback loops between compartments. The system of interest can be conceptualised as a causal loop diagram using a participatory group model-building process. The resulting model can qualitatively describe complex systems. Computer-aided simulation is then used to run the model for quantitative outputs to which monetary values can be assigned, making it possible to simulate data to integrate with CEA or CBA. ⁵⁰¹

CBA=cost-benefit analysis. CEA=cost-effectiveness analysis. LCA=life cycle assessment. MCDA=multi-criteria decision analysis. SD=system dynamics.

Table 1: Key economic evaluation and decision support frameworks relevant to One Health

Description	
Life-years gained	Life-years gained is a simple unidimensional metric for health improvement that considers changes in mortality only, with no quality-of-life dimension. ⁵⁰²
QALY	A QALY is a composite metric accounting for the quantity and quality of life, and is the leading metric for quantifying health gains in health technology assessments. Health-related quality of life is measured on a scale of 0–1 and is linked to health rather than disease states. QALYs are considered a good to be maximised. The assessment of health-related quality of life is challenging, but methodologies include time trade-off and standard gamble, in which individuals make explicit choices regarding what they would sacrifice in terms of time or risk of death to return to a state of perfect health, as well as indirect measures, such as the use of the EQ5D. ⁵⁰³ Ethical concerns have been raised regarding the possibility that the lives of people with disabilities are inherently devalued by the QALY system. A treatment that extends the life of people with a lower health-related quality-of-life score will result in fewer QALYs gained than one that extends the life of people living with higher subjective quality-of-life scores. ⁵⁰⁴
DALY	One of the most frequently used metrics in global health policy planning, DALYs estimate the gap between a population's current and optimal health. DALYs are considered a bad to be minimised. A DALY is a composite metric considering years of life lost and years of life lived with disability, assessed through disability weighting, on a scale of 0–1. Multiple methodological updates have been made to the DALY since its introduction in 1993. ⁵⁰⁵ The DALY is currently used by the Institute of Health Metrics and Evaluation to measure the global burden of 369 diseases and injuries in 204 countries and territories on an annual basis within the Global Burden of Diseases Study. ⁵⁰⁶ Standardised methods for DALY calculations with supporting models are available. ⁵⁰⁷ Disability weightings remain one of the most contentious aspects of the DALY and, like the health-related quality of life measure, have been derived from patient, expert, and community surveys using instruments such as time trade-off and standard gamble.
HALY	A group of newly proposed, enhanced HALY metrics in which the multiattribute surveys used to measure health or disease states are extended to incorporate human wellbeing. Examples include the wellbeing-adjusted life-year ⁵⁰⁸ and the capability-adjusted life-year. ⁵⁰⁹ These extensions can be produced through the use of bolt-on measures within survey tools such as the EQ5D or by developing new tools to measure broad societal outcomes, rather than health states. Although extensions to the core HALY metrics (DALYs and QALYs) are not in common use, the body of literature considering their use in economic evaluation frameworks from the societal perspective is expanding.
zDALY	The zDALY is an expansion of the DALY that incorporates an animal loss equivalent, which converts economic losses suffered in livestock into DALYs by dividing the monetary value of the loss by the national income to reflect the time a person would spend recouping the loss (eg, a loss of \$500 in a country where the GNI is \$1000 would be equivalent to 0.5 DALYs). ⁵¹⁰ The principle of the zDALY is simple to apply and could enable other environmental and social impacts to be incorporated into a single metric, based on the relationship between the market-based economic losses and GNI, or by using an intermediary step of assigning a proxy monetary value to a non-market good or service and then dividing by the GNI.
WALY	A novel metric proposed to measure animal health impact similar to the DALY for humans, the WALY combines the years of life lived in impaired welfare and the years (or potentially months) of life lost from premature death, with the expected life expectancy appropriately optimised to reflect the role of the animal species in human society (ie, the role as a companion or food-producing animal). ⁵¹¹ Although the WALY is potentially useful in prioritisation exercises for animal health issues and for cost-effectiveness analysis within the animal health sector, the use in multisectoral analysis would depend on the availability of a mechanism to appropriately weight the WALY in comparison with a DALY, in order to combine the two into a single measure of outcome. Alternative metrics to incorporate animal welfare indicators include species-adjusted measure of suffering-years. ⁵¹²
Morally adjusted animal lives	Morally adjusted animal lives incorporate life quality and a subjective weighting for moral value on the basis of perceived intelligence in comparison with that of humans, which, in theory, might provide a mechanism to allow comparison of morally adjusted animal lives avoided to DALYs avoided. ⁵¹³ The moral implications of using perceived intelligence as a rationale for weighting the value of a saved life needs more investigation.
Lifecycle impact assessment categories	Integral to the lifecycle impact assessment are multiple impact categories, measured as midpoint or endpoint indicators, which result in a damage indicator (to human health, ecosystem quality, resources, and ecosystem services). Each impact category has specific metrics for reporting (eg, climate change due to greenhouse gas emissions is expressed in kilogram CO ₂ equivalents, ozone depletion in kilogram trichlorofluoromethane equivalents, and freshwater contamination with nutritional elements such as nitrogen-containing or phosphorus-containing compounds in kilogram nitrogen equivalents and phosphorus equivalents). ^{514,515}
World Happiness Report	The World Happiness Report is an annual publication that uses data based on the Gallup World Poll, such as the Cantril Self-Anchoring Striving Scale (or the Cantril Ladder), to showcase global happiness rankings of countries worldwide. The Gallup World Poll is a survey done every year in more than 100 countries and includes life satisfaction ratings and emotional wellbeing questions. Gallup data is used extensively in multiple global datasets. ^{516–518} Many other efforts to report national and global wellbeing measures exist, such as the Organisation for Economic Cooperation and Development Better Life Index and the Happy Planet Index. ⁵¹⁸
GOHI	The GOHI, proposed by Zhang and colleagues ⁵¹⁹ in 2022 is a composite metric comprising three indexes of indicators drawn from open-source data from over 200 nations and weighted by a panel of experts. The three indices of indicators are intended to enable a holistic and context-applicable assessment encompassing One Health implementation across a range of key challenge areas, including zoonotic diseases, AMR, food security, climate change, and governance (ie, the core drivers index); social, economic, and cultural facilitators of One Health (ie, the external drivers index); and the integration of human-animal-environment systems (ie, the intrinsic drivers index). ⁵¹⁹ Given the holistic nature of One Health, the GOHI has similarities to other multi-indicator composite metrics proposed for the evaluation of societal progress beyond gross domestic product, such as the Social Progress Index. ⁵²⁰
<p>DALY=disability-adjusted life-year. EQ5D=EuroQoL-5 Dimension scale. GNI=gross national per-capita income. GOHI=Global One Health Index. HALY=health-adjusted life-year. QALY=quality-adjusted life-year. WALY=welfare-adjusted life-year. zDALY=zoonoses disability-adjusted life-year.</p>	
<p>Table 2: Non-monetary metrics relevant to One Health evaluation frameworks</p>	

conversation around the incorporation of One Health-appropriate indicators within the measurement of societal progress.

The paucity of standardised evaluation frameworks currently limits the empirical evidence for the added value of the One Health approach to diagnostics,

Description	
VSL	VSL is one of the most important and regularly used parameters for including health in economic evaluations. It is a measure of a population's WTP* for a small reduction in risk of mortality or willingness to accept compensation (in the form of higher wages) for an increase in mortality risk. ⁵²¹ VSL does not account for the social value of lives lost (eg, the loss of social capital or grief experienced by society). The VSLY can be estimated by dividing the VSL by the expected number of remaining years of life. The VSLY has been used by some researchers as a proxy for the monetary value of a Disability Adjusted Life Year (DALY), in order to create a combined monetary burden of disease. ⁵²²
Monetised value of a DALY or QALY: public sector-implied WTP	Public sector-implied WTP is a relative value of outcomes implied by the allocation of public-sector resources to an outcome cost per QALY threshold. More research is required to determine thresholds for different outcomes in different sectors. Implied values could be used as the monetary value in cost-benefit analysis or monetised lifecycle assessment frameworks. Public sector-implied WTP assumes that the public sector allocation is efficient and reflects the values placed by the public on the outcome. ⁵⁰⁸
Monetised value of a DALY or QALY: individual WTP (welfarist)	Multiple methodologies (such as QALY or DALY) are available to value a health outcome from a welfarist approach. ⁵²³ Concerns arise from the valuation of health outcomes by individuals, particularly related to variations due to income inequality. Therefore, the WTP should be corrected for income inequality through the application of distributional weights.
Monetised value of a DALY or QALY: societal WTP (non-welfarist)	To overcome arguments against both public sector-implied and welfarist WTP methodologies, a non-welfarist approach would consider asking members of the public what a government should provide towards different policies and sectors. As payment is not out of pocket, distributional concerns are reduced compared with out-of-pocket expenditure schemes and income inequality should not affect the WTP. ⁵²⁴ For economic evaluations from a societal perspective, such societal non-welfarist approaches would be most appropriate.
Cost-of-illness studies	Cost of illness refers to a descriptive assessment of the economic burden of health problems from a patient, health provider, or societal perspective, into which the direct and indirect costs of illness are combined with morbidity-related and mortality-related production losses. Monetary valuations of lives or QALYs lost are sometimes incorporated into cost-of-illness studies. ⁵²⁵
Monetised lifecycle impact assessment categories	The monetisation of lifecycle impact assessment categories for use in cost-benefit analysis or monetised lifecycle assessment includes a diverse range of approaches, such as observed and revealed WTP from real and surrogate markets, damage costs (ie, the costs incurred due to direct environmental impacts, such as the health impact of air pollution), and abatement costs (ie, the costs incurred per unit of good or service under the condition of low or no environmental externality, such as the additional cost per unit of electricity produced with low-emission technology). The methodologies for the valuation of environmental indicators have been extensively reviewed. ^{526,527}
Natural capital accounting	Natural capital accounting identifies the stocks, condition, and flow of natural assets and the services they generate over time, including their depreciation. Although often anthropocentric in nature, value can be attributed to natural assets in their own right, allowing nations to account for their natural capital reserves and the depreciation of such reserves within their conventional national accounts. ⁵²⁸
GPI	GPI is a measure of national wellbeing that accounts for personal consumption expenditures, adjusted for factors such as income inequality, environmental costs, and other positive and negative social outcomes. ⁵²⁹ Methods for accounting for non-monetary goods and services, used in the calculation of GPI, might be of interest in the development of improved social cost-benefit analysis frameworks.
Economic losses from animal diseases	The valuation of losses due to animal disease and the response to these diseases are generally assessed through the market prices of the goods and services these animals provide. Standardised guidelines for the conduct and reporting of animal disease burden studies are not yet available, which makes comparing studies difficult, as shown by a 2022 systematic review of economic evaluations for foot and mouth disease. ⁵³⁰ Progress towards a systematic methodology for determining the societal burden of animal diseases is being led by the Global Burden of Animal Diseases consortium using the concept of the Animal Health Loss Envelope, representing the gap between the operation of a production system under perfect conditions and in the presence of hazards (eg, disease or injury). ⁵³¹

GPI=genuine progress indicator. VSL=value of statistical life. VSLY=value of a statistical life-year. WTP=willingness to pay. *The WTP approaches comprise a variety of methodologies, including discrete choice experiment, constant sum paired comparisons, contingent valuation, hedonic pricing, and others.^{524,532} Ethical concerns have been raised over the use of WTP methods in the health sector.⁵³³

Table 3: Monetised valuation methodologies

vaccines, medicines, and other interventions. As a nascent discipline, One Health economics must consolidate knowledge and practice and engage decision makers to obtain consensus on guiding principles and methodological consistency. Key priorities for the discipline include assessing which frameworks and metrics to use across sectors and how to report complex evaluations transparently and accessibly. Additionally, novel approaches to cost sharing and funding should be considered in order to better reflect the attribution of costs and benefits within multisectoral interventions.⁵³⁴⁻⁵³⁶ Despite a societal perspective being the best fit for One Health economics, translating a multifaceted societal

outcome or net societal benefit into sector specific systems with their own budget lines and interests is difficult. Suggestions to better align decision-making processes with societal goals include interministerial platforms and central One Health offices positioned at the highest levels of government.⁵³⁷ Developing these integrated mechanisms requires time and other resources, and presupposes that current resource imbalances between the human, animal, and environment sectors are addressed.^{69,485}

Ministries of health and agriculture tend to have different and potentially conflicting priorities in their approaches to disease management, with few institutional

mechanisms or legal frameworks currently supporting collaboration and a potential reluctance to fund issues that each ministry believes is the responsibility of the other.⁵³⁸ For example, the economic costs and benefits of rabies control are unevenly distributed across sectors; although the human public health sector retains most of the economic benefit, including reduced human rabies cases and avoided expenditure for post-exposure prophylaxis, the veterinary sector is generally responsible for the costs of canine rabies control but receives few financial returns, as dogs are not considered an economically valuable species.⁵³⁹ Seen from a societal perspective, the cumulative cost of mass vaccination of dogs at sufficiently high coverage to interrupt transmission is lower than continuous human post-exposure prophylaxis,⁵⁴⁰ yet costs and benefits are attributed differently in different ministries, with logistical difficulties for efficient cost sharing. A solution to the appropriate attribution dilemma has been seen in Latin America, where all canine rabies control responsibilities have been brought under the remit of the ministries of health,⁵⁴¹ but for more complex interventions, alternative solutions must still be explored.

In conclusion, despite the complexities and challenges associated with evaluating the One Health approach to interventions, several prominent examples have clearly shown the added value that this integrated approach can yield. Given the vast breadth of instances in which a One Health approach can be engaged, a balance must be struck between the aim of economically evidenced added value and the need to assume impact pathways that prevent disease, avoid harm, and apply resources efficiently and equitably. Greater attention should also be paid to the challenges of scaling up what are commonly small-scale research projects, including properly piloting and adjusting them for wider (eg, national or regional) implementation. Additionally, given that research has predominantly focused on zoonotic infectious pathogens, increased knowledge is needed regarding the potential added value of a One Health approach to NCDs and environmental protection. A synthesis of key messages and gaps related to One Health, health-promoting synergies, and health systems is presented in the appendix (p 6).

7. A One Health approach to equitable, sustainable, and healthy food systems

7.1 Introducing a One Health perspective on food systems

Food systems encompass all actors and activities involved in all stages of food production, processing, distribution, consumption, and disposal (figure 8). Food systems span agriculture, fishing, and forestry and operate at local, national, regional, and global levels. Food systems activities and outcomes are influenced by multiple forces (ie, drivers), including politics, economics, culture, commercial interests, demographics, consumption trends,

and research and development. Desirable food systems outcomes can include food security and the promotion of sustainable and healthy diets, as well as income generation, improved livelihoods, and economic development.⁵⁴²

Accounting for food systems interests among the multitude of actors and drivers requires a balancing act, at the heart of which are interdependent relationships between humans, animals, plants, and the wider environment. Of utmost importance from a One Health perspective is the question of how to sustainably and equitably meet the food and nutrition needs of a growing, more affluent, and socially dynamic human population, while promoting the health and wellbeing of humans, other animals, plants, and the environment at large. One Health and the principles of holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability (panel 2) can help us to negotiate this question and to address the global health challenges of malnutrition and food insecurity, as well as the sustainability challenges of contemporary food systems, in ways that centre equity, prioritise sustainability, and advance health throughout the socioecological system.

7.2 Interconnected food systems challenges

Food systems are largely extractive and destructive, reinforcing inequities and generating and perpetuating an unsustainable, unsafe, and unhealthy range of environmental, health, and socioeconomic costs linked to food. These costs (nearly US\$12 trillion annually) exceed the value of the global food systems output.⁵⁴³ Achieving equitable, sustainable, and healthy food systems entails addressing several crucial challenges: foodborne diseases, undernutrition and overnutrition, and unsustainable trends in agrifood systems.

7.2.1 Foodborne diseases

Animal agriculture, transport, slaughter, processing, and packaging are all activities that risk the exchange of pathogens between live animals and workers, as well as the contamination of food products,^{544,545} rendering food systems key sites of zoonotic and foodborne disease emergence. An estimate of global foodborne disease incidence, mortality, and DALY burden in 2010 reported that diarrhoeal agents are a major cause of global mortality and that 33 million DALYs are lost to foodborne diseases, primarily among children younger than 5 years and populations in low-income settings.⁵⁴⁶ The associated productivity losses are estimated at US\$95·2 billion per year in LMICs alone.⁵⁴⁷ Additionally, antimicrobials are used to promote growth and prevent and treat infections in food-producing animals and plant agriculture. Antimicrobials are at times also added to food products as preservatives.⁵⁴⁸ Both scenarios could have implications for AMR (as discussed in section 4).

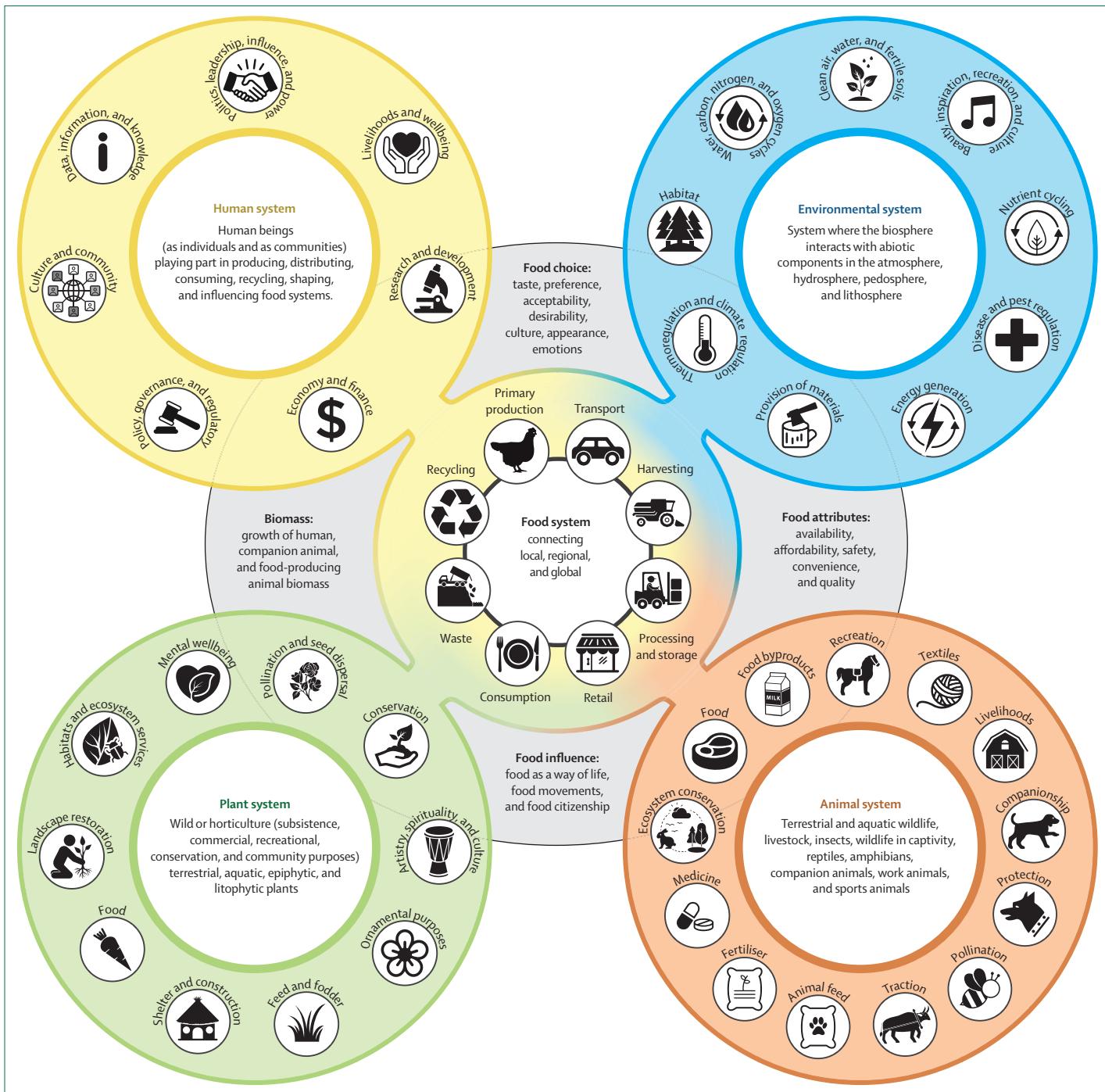


Figure 8: The food system

At the heart of food systems are interdependent relationships between humans, other animals, plants, and the wider environment. The One Health approach is crucial for addressing the health and sustainability challenges that arise in connection with contemporary food systems, and for advancing equitable, sustainable, and healthy food systems.

Within the formal, regulated food system, international food standards, guidelines, and codes of practice contribute to safety, quality, and fairness in the international food trade.⁵⁴⁹ However, a considerable proportion of the global population is fed through

informal food systems. These systems generate income and autonomy with respect to food production, distribution, and purchase, often with varying degrees of locally defined rules and practices, but without subscribing to formalised and internationally regulated

standards.⁵⁵⁰ Food safety and animal welfare concerns arise in particular around the wild animal trade and markets,^{551,552} which, despite risks, play a crucial role in food security, cultural expression, social cohesion, dietary diversity, and livelihoods of billions of producers, sellers, and consumers around the world.⁵⁵³ A major barrier to safer food production and exchange in the informal food sector is the insufficient infrastructure required to promote and enable sufficient hygiene among producers and market stakeholders.⁵⁵⁴ Hygiene-promoting incentives, which have been shown to be more effective in delivering safe food than enforcement and penalties, are inadequate.^{547,555,556} The role of trade liberalisation might also be important to consider, along with potential differences in risk between the international wild animal trade and domestic trade and markets.

7.2.2 Undernutrition and overnutrition

Both undernutrition, resulting from hunger and food insecurity, and overnutrition, resulting in obesity, are increasing globally.⁵⁵⁷ In the past 30 years, a transition has occurred in global nutrition from primary foods to processed and ultra-processed foods with low fibre content and high amounts of salt, fat, and sugar. The ten leading multinational food and beverage companies of the world produce and actively market mostly ultra-processed foods,⁵⁵⁸ which now make up more than half of the total energy intake in HICs and a rapidly growing proportion in middle-income countries, where marketing is increasingly focused.⁵⁵⁹ Trade liberalisation, increased foreign direct investment in and financialisation of the food sector, and pervasive and aggressive promotion of ultra-processed foods and unhealthy eating habits all make highly processed and unhealthy foods widely available and affordable on domestic markets, which undermines public health.⁵⁶⁰ The triple burden of undernutrition, overnutrition, and micronutrient deficiency (which are all risk factors for NCDs) is rising rapidly, including among urban populations with low income.^{561–564} The global rise in obesity among both adults and children is so intractable that the 2025 WHO target for childhood overweight is merely to stop the increase,⁵⁶⁵ and even this target has been shown to be substantially off track and unlikely to be reached.^{566,567}

7.2.3 Unsustainable trends in agrifood systems

Food waste is a notable unsustainable trend. An estimated one third of all food produced globally for human consumption (1·3 billion metric tonnes) goes to waste each year.⁵⁶⁸ In 2018, 2 billion people (approximately a quarter of the world's population) faced moderate or severe food insecurity (ie, lacked regular access to a nutrient-dense and sufficient food supply), and more than 10% of the global population was undernourished.⁵⁶⁹ Reducing food loss and waste and increasing the efficiency of global trade, including through more

equitable food distribution, would help to mediate the socioeconomic drivers of food insecurity, such as poverty and inequity.

GHG emissions and encroachment are also unsustainable. The global agriculture sector, forestry, and other land use are estimated to account for 23% of global GHG emissions.⁵⁷⁰ Evidence overwhelmingly supports that reducing animal agriculture and supporting carbon-neutral agricultural production systems are major keys to substantial reduction of GHG emissions.^{571–575} The loss of wildlife habitat to pasture and farmland is a major risk factor for infectious disease outbreaks, including pandemics.^{576,577}

Lastly, monocultures need to be addressed. Given the increasing food demands of the growing global population, monocultures of crops such as rice, corn, soya, and wheat have increased to maximise efficient use of soil and local climate, crop yield, and profit. However, monocultures have considerable environmental impacts, including increased use of pesticides and fertiliser, soil degradation, and decreased biodiversity.^{578,579} Similarly, the increasing demand for meat and the promotion of enhanced livestock breeding practices have implications for animal welfare and are contributing to poor genetic diversity among herds, which potentially increases susceptibility to pathogens.^{483,580}

7.3 One Health for food systems understanding and transformation

Systemic changes towards more sustainable agriculture and food consumption are urgently needed. Any transformation must recognise that the importance of livestock and other animals in many countries and cultures extends beyond their contribution to diets, and might include their roles in providing agricultural traction and facilitating mobility, their social values as companion animals, and their cultural or spiritual significance.⁵⁸¹ The maldistribution of power within food systems, the dynamics of food systems globalisation and financialisation, and implications for sustainability and health throughout the socioecological system also need to be addressed. Global food systems are exceptionally interconnected, with complicated trade networks focused on supply chain efficiency.⁵⁸² However, some food systems concentrate power in a few hands and locations, thereby reducing resilience against shocks. This reduced resilience manifests as food shortages, as recently seen with the COVID-19 pandemic and the Russia–Ukraine war.^{583–585} Considering how a financialised global food production system that feeds the world might also result in the erosion of public goods (including a negative effect on climate and biodiversity), the often conflicting narratives between the public and private become clear and need to be addressed (panel 6).

One Health can help us understand and navigate the complexity of food systems challenges, identify and

cultivate unifying values around various stakeholders' roles and responsibilities, and ultimately implement changes that contribute to sustainable food systems (ie, to deliver food safety and security in globally, intragenerationally, and intergenerationally equitable ways and promote the health and wellbeing of humans, other animals, plants, and the environment at large).⁵⁹⁶

To operationalise a One Health approach to food systems, a holistic, global food systems governance platform and financing framework is needed. Through this framework, international and collective action to improve food systems should be prioritised, funded, monitored, and overseen, and non-compliance with agreed food safety, food quality, animal health and welfare, and environmental standards should be penalised. In addition, One Health competencies and food systems literacy that holistically address interconnected food systems challenges are needed among non-governmental actors, including donors, regional governance bodies, civil society, and non-governmental organisations.

Of particular importance to sustainable food systems is optimising the affordable production of safe and

nutritious food, while simultaneously supporting livelihoods and maintaining public goods, such as ecosystem services, reduced GHG emissions, and healthy human and animal populations. This goal is just as important in aquatic systems as in terrestrial systems and, although aquatic systems are often under-considered in the One Health field, a One Health framework can help increase the productivity of aquatic food systems and ensure sustainability.⁵⁹⁷

To drive cohesive policy dialogue around food systems and to address the complex, inter-related issues emerging in the human health, animal health, plant health, and environmental fields, considerations of power dynamics and variations in value systems among a broad range of stakeholders are crucial. The political economy perspective challenges the more traditional, productivist approach to food security, which encourages a focus on food sufficiency at the expense of food safety, nutrition, and sustainability.^{598–600} Applying a political economy perspective brings to the fore the use of the One Health approach in providing an opportunity to re-examine specific regional or national priorities and to share lessons and other complementarities both

Panel 6: The financialisation of food systems

Financialisation generally refers to the increasing importance of financial markets, motives, institutions, and elites in the operation of the economy and its governing institutions.^{586,587} Financialisation has been transforming how and which food is produced, distributed, and consumed, sometimes compromising the capacity of food systems to provide long-term livelihoods and food security. For example, financialisation can result in changing priorities, as maximising dividends for shareholders becomes paramount and might entail bundling services with insurance products for hedging against risks, which shifts responsibility from the state to farmers.⁵⁸⁸ Changes in food production priorities motivated by financial incentives might worsen existing power and wealth imbalances, and could lead to corporate consolidation with concentrated power, decreased farming diversity and biodiversity, dependence on insurance products, externalisation of environmental and social costs, and price volatility (which risks extreme food price increases and consequently hunger).⁵⁸⁸ An example of the complexity of the problems associated with the financialisation of food systems and the implications for food security is the year-long protests by farmers in India that ended in November, 2021 relating to new laws that they feared would bind contractual farming to corporate buyers and thus create monopolies in the grain markets. Farmers wanted to maintain their autonomy as cultivators and the Indian government eventually conceded.^{589,590}

Serious food security and environmental impact concerns exist regarding investors buying swathes of arable land for surface mining (after which only non-arable wasteland remains)⁵⁹¹ and acres of pristine forest for cash-crop farming, such as banana

and palm plantations.⁵⁹² Researchers and the media have also raised alarm about heightened farmland investment in Africa, Asia, Latin America, and central Europe, particularly regarding the influence of private investors in global agrifood value chains and the consequences of their actions, which include the loss of land for subsistence farming and the promotion of cheap and calorie-rich, unhealthy foods.⁵⁹³ In the past 10 years, investments in meat and dairy corporations have attracted renewed scrutiny. Between 2015 and 2020, more than US\$478 billion was invested in meat and dairy companies from more than 2500 investment firms, banks, and pension funds globally.⁵⁹⁴ A 2020 report by FAIRR Initiative shows that meat sector companies are acting insufficiently to measure and manage pandemic risk across seven selected environmental, social, and governance (ESG) risk and opportunity factors: deforestation and biodiversity loss, antibiotics, waste and pollution, animal welfare, working conditions, food safety, and sustainable proteins.⁵⁹⁵ The majority of companies included in the study (44 [73%] of 60, which are together valued at \$224 billion) were considered high-risk, and more than three-quarters of these 60 companies were categorised as such due to the following three ESG risk factors: waste and pollution (94%), deforestation and biodiversity (88%), and antibiotics (77%).⁵⁹⁵ Nevertheless, the negative environmental effects of these systems are often ignored and investors routinely tout sustainability policies.⁵⁹⁴ Without public disclosure of ESG performance and management by companies, investors will remain unable to accurately assess the health and sustainability risk that these companies introduce into food systems.

Panel 7: Exemplifying a One Health approach to the political economy of food systems

In this example, Country A is grappling with groundwater contamination as a national environmental policy issue, and is also concerned about high concentrations of antibiotic residues in imported poultry from neighbouring Country B.

Groundwater and food safety are mandated by two separate policy bodies in Country A. In Country B, the sale of antibiotics is a key livelihoods option for animal health providers acting within a largely privatised veterinary system. Despite these seemingly different and unrelated issues, a political economy approach, when applied through a One Health lens, could help to identify common ground that facilitates joint approaches to identifying and funding solutions.

Countries A and B endorse a new regional policy to promote agricultural chemical best practice, catalysing both public and private regional agricultural value chain actors to agree on acceptable frameworks for the registration, distribution, and monitoring of agricultural inputs (including animal therapeutics). For Country A, this regional policy helps catalyse increased national investment and support to address

groundwater contamination. This policy will also help support Country A's standards around maximum accepted residue limits for imported poultry, with the desired positive effect on national food safety.

For Country B, this new regional agricultural chemical policy catalyses national policy dialogue around incentives for private agricultural value chain actors, including veterinary paraprofessionals, to help encourage lower concentrations of chemical residues in plant and animal products. With the right domestic policy settings, this policy might even result in increased benefits to the producer for improved food safety compliance, resulting in better quality and higher value poultry exports.

In this way, looking holistically at food systems challenges can help identify synergies between the public health, agricultural, and environmental sectors, including the public and private actors within them, to facilitate improved health, welfare, and environmental sustainability and support the private-sector interests that are central to food production and supply.

between countries and regions and internationally, as exemplified in panel 7.

The EAT–Lancet Commission on healthy diets from sustainable food systems identified food as the strongest lever for positive planetary change. The Commission warned, however, that “global food production threatens climate stability and ecosystem resilience. It constitutes the single largest driver of environmental degradation and transgression of planetary boundaries”.⁶⁰¹ We support the EAT–Lancet Commission’s call for food systems that, among other things, reduce food loss and waste by half, and we underscore the need for more explicit assessment of the health of humans, other animals (including insects), plants, and soil in food research, decisions, and policy making. To drive cohesive policy dialogue around food systems and to address the complex and inter-related health and sustainability challenges in which food systems are implicated, the One Health priorities of food systems must be understood and articulated locally, nationally, regionally, and globally. Crucially, regionally sensitive approaches are necessary, especially to understand the effect of local livestock production for food. Although global consensus is needed, a one-size-fits-all approach cannot be taken.

As this discussion has outlined, the complexity of global food systems and the quest for balanced and healthier outcomes among all humans and throughout the socioecological system underscores the potential of a One Health approach for transforming food systems. Identifying sustainable solutions to food systems challenges requires the application of current concepts, knowledge, and tools across a broad range of technical, economic, social, and political dimensions and

satisfying a multitude of actors and drivers. Given that basic sufficiency goals are not on track to be met, and knowing well the negative impacts of current food systems on public health, animal wellbeing, and the environment, contemporary food systems clearly require a One Health-guided recalibration. A One Health approach to food systems becomes even more important in countries where agricultural production is a key contributor to livelihoods and incomes among rural populations with low income⁶⁰² and where business as usual would result in more negative impacts on the world’s most vulnerable communities. In this way, the challenge of sustaining the fundamental functions of global food systems, including food security and safety, nutrition, livelihoods, social security, and economic development, while minimising the negative impacts on global public goods, such as climate stability, natural resources, ecosystem services, biodiversity, and public health, remains a One Health priority. A synthesis of key messages and gaps related to One Health and food systems is presented in the appendix (p 7).

8. A socioecological transformation for the 21st century and beyond: avenues for One Health operationalisation, implementation, and institutionalisation

In this Commission, we have synthesised and appraised the One Health state of the art, from a socioecological perspective and in the contexts of key health and sustainability challenges (including the triple planetary crisis of climate change, biodiversity loss, and pollution), infectious diseases (endemic, epidemic, and emerging), NCDs, and AMR. In addition, we have addressed a One Health approach to surveillance; food systems; and

diagnostics, interventions, and health systems. In this final section, we propose three equally crucial, intersecting, and interdependent avenues for One Health operationalisation (ie, translation of the One Health concept into action), implementation (ie, execution of relevant actions), and institutionalisation (ie, integration as a normative way of operating), to guide the transformations in governance, economics, and knowledge that are necessary to achieve equitable, sustainable, and healthy socioecological systems.

8.1 One Health governance

Governance processes are varied, complex, and dynamic. Multiple actors, scales, and timeframes are involved.⁶⁰³ Contemporary literature distinguishes two forms of global health governance: global governance of health, referring to governance of and within the health sector, and global governance for health, referring to governance that serves the interests of health throughout all relevant sectors.⁶⁰⁴ Global governance for health has focused on the social and, to some extent, environmental determinants of health and the political drivers of health inequity, alongside which promoting health and achieving health equity has come to be understood as the shared responsibility of all sectors.^{605–607} Governance of and for One Health also requires multisectoral investment in and shared accountability for human, animal, and environmental wellbeing. Building on calls for Health in All Policies and whole-of-government and whole-of-society approaches to global governance for health,^{608,609} this Commission calls for an approach to governance that can be conceived of as One Health in All Policies, across all sectors, and at all levels of society.

8.1.1 One Health governance advances and challenges

Advances in One Health governance have included many high-level endorsements of One Health; global moves towards concrete frameworks for One Health operationalisation, implementation, and institutionalisation,^{13,51,68,69,174,610–618} declarations of One Health principles (panel 2);^{46,49} and the proliferation of international, national, regional, and institutional One Health platforms, networks, alliances, and coalitions.^{619,620} The establishment of the One Health Quadripartite and the OHHLEP,⁶²¹ the widely adopted OHHLEP definition of One Health, and the October, 2022 launch of the 5-year One Health Joint Plan of Action,^{174,622} have been especially important steps on the path towards growing consensus and joint One Health governance. Several national One Health strategic action plans have also been adopted,⁶¹⁸ especially in LMICs and in some cases with the support of development cooperation and assistance.⁶²³ Almost 100 countries have One Health action plans on AMR.⁶²⁴

Despite this progress, governance challenges remain substantial. NCDs have received little to no attention in

One Health action plans, and global action plans on NCDs seldom engage the One Health approach despite its relevance.^{625,626} Moreover, several countries, and HICs in particular, lack the legal frameworks, strategies, and structures needed to support and advance multisectoral collaboration towards One Health operationalisation, implementation, and institutionalisation.¹³

One Health governance has also been stymied by insufficient harmonisation and coordination among initiatives and by fragmentation, including competition among stakeholders, systems, and sectors with varied principles, norms, regulations, power, and priorities.⁶²⁷ Challenges also exist regarding the investments needed for One Health-guided pandemic prevention, which the World Bank estimates amount to US\$10·3 billion to \$11·5 billion per year (ie, far less than the cost of managing a pandemic, but nevertheless substantial).⁶²⁸

These challenges to One Health governance are exacerbated by donor-driven development agendas, short-term and sector-specific funding, competition between organisations and ministries, and elite capture (ie, when public resources and policies protect the interests of powerful elites). In-depth understanding of sector-specific priorities, incentives, organisational cultures, and spheres of influence, and especially of the complementary and overlapping interests and co-benefits of collaboration, is fundamental for generating a sense of shared responsibility for achieving and sustaining healthy socioecological systems and the strong commitment to the transformations demanded across all sectors and stakeholders. The IPBES assessments on the links between biodiversity, water, food, and health,⁶²⁹ the underlying causes of biodiversity loss, determinants of transformative change, and options for achieving the 2050 vision for biodiversity,⁶³⁰ show progress, as does the UNEP blueprint for jointly addressing the triple planetary crisis of climate change, biodiversity loss, and pollution.⁶³¹ Other insights could be generated by examining how the challenges to collaboration and decision making across multiple sectors, scales, and global regions were confronted in the development of climate change governance,⁶³² and in establishing the Agreement under the UN Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas beyond National Jurisdiction.⁶³³

8.1.2 Towards achieving governance for One Health

One Health operationalisation, implementation, and institutionalisation presupposes a common goal and requires negotiating and addressing a range of governance challenges, including the trade-offs and tensions between different mandates and the power dynamics among stakeholders.⁶³⁴

Some types of institutional arrangements better facilitate One Health governance than others. African countries especially are playing a leading role in

establishing national and regional coordination bodies and initiatives that drive One Health operationalisation, implementation, and institutionalisation,^{635–639} as exemplified by a review of 315 One Health initiatives that had been established in sub-Saharan Africa by 2021⁶¹⁹ and a more recent proposal for a district-level One Health service delivery model in Kenya.⁶⁴⁰ Several One Health initiatives have also emerged in south Asia, including operational One Health strategies in Bhutan and Bangladesh,⁶³⁸ along with efforts to develop One Health priorities for the region.^{616,641} Integrating One Health into institutions that are still under development or undergoing reform therefore seems to be less demanding than transforming those that are already established.

Achieving a global One Health governance scenario that resonates with our proposed socioecological systems perspective and approach (as discussed in section 1) and One Health ethos (panel 2) demands a global reorientation of values, interests, goals, resource allocation, and distribution of authority and power.⁶²⁷ Multiple challenges need to be addressed, including fragmentation among initiatives, a lack of coordinated and cohesive strategic direction, insufficient stakeholder representation (especially from LMICs and marginalised communities, including local and Indigenous populations), little engagement among key segments of the private sector, structural barriers to wider collaboration (including inadequate funding for multiministry and multiagency collaboration), and gaps in monitoring and evaluation.^{50,642}

A possible avenue to realising One Health governance could be through establishing a global One Health governance framework and structure, which would provide technical guidance and evidence-based support for capacity building for not only well recognised One Health concerns, such as infectious diseases and AMR, but also NCDs, food systems challenges, and the wide range of socioecologically interconnected health and sustainability challenges. Such a One Health structure could model established science–policy interfaces, such as the IPCC and IPBES, but should also review and advise on evolving policy issues and support or perform external evaluations of progress towards One Health operationalisation, implementation, and institutionalisation. The proposed structure could be a new entity or, ideally, the already existing structures (the OHHLEP-supported Quadripartite and their respective regional coordinating mechanisms) could evolve to fulfil these functions, if provided with sufficient resources, including funding, a dedicated full-time workforce, and legal authority. This governance framework should leverage established institutions and governance arrangements where they exist and create new ones where there are gaps. Proposing the inevitable institutional trade-offs and predicting the ideal outcome is beyond the scope of this Commission and current state of progress, but clarity can emerge and evolve through the following,

five-step process, which should be pursued under the leadership of WHO, WOAH, UNEP, and FAO (effectively the One Health Quadripartite), with the support of the OHHLEP, and in collaboration with all other relevant international organisations (eg, the World Bank and UN Educational, Scientific and Cultural Organization).

First, these parties should commit to an ambitious vision for the scope of this global structure and governance framework.

Second, they should develop theories of change and take stock of the current state, measured against the vision and scope, including a methodologically rigorous appraisal of what exists, how is it performing, and where reform and novelty are needed.

Third, a future state of global governance for One Health should be designed, taking into account where issue-specific bodies play a role, where global One Health interests are better served by grouping, and how relationships and authorities relative to the international One Health organisations will work. This future state should comprise four types of bodies: governance bodies to define the mandate and strategic direction and perform high-level advocacy; resource mobilisation bodies to generate and manage funds; science and evidence bodies to generate and synthesise evidence, design technical frameworks, and advise; and stakeholder bodies to drive engagement and manifest partnerships for action.

Fourth, global and multilevel discussion should be engaged among all stakeholders (eg, on whether something is supported by stakeholders, why, and what design improvements are suggested). At a minimum, the following stakeholder groups should be meaningfully engaged: global, regional, national, and community political leaders and bodies; the research community; civil society and communities; the private sector, including industry; funders, including philanthropy; and implementors across all stakeholder categories, including governmental and non-governmental organisations.

Fifth, any new legal mandates that are necessary for effective implementation of the One Health framework should be established. Accountability mechanisms and any necessary transition arrangements for integrating existing mandates to new structures should also be established. Implementation should be accompanied by monitoring and evaluation, which will inform timelines and procedures for review, as well as revision and evolution as necessary.

The negotiations surrounding the WHO Pandemic Agreement could provide an impetus for establishing a global One Health governance framework and structure that would oversee and provide technical and scientific support during implementation of the agreement, including by addressing emerging policy challenges and contributing to negotiations. In addition, the inclusion of One Health in the WHO Pandemic Agreement could promote integrated One Health surveillance systems

towards connecting and sharing data on infectious pathogens and other health risks in wildlife, companion animals, livestock, humans, and the environment (as discussed in section 2), among other benefits. This inclusion could also facilitate the adoption of a standardised evaluation framework, including appropriate metrics and indicators, for evaluating One Health initiatives (eg, surveillance and interventions).⁶⁴³ Importantly, the struggle to conclude the WHO Pandemic Agreement negotiations, and the controversy around the inclusion of the One Health and pathogen access and benefit-sharing elements in particular, are examples of the challenges faced in negotiating interests related to national sovereignty and addressing the power imbalances between LMICs and HICs.^{644,645}

Despite the need for One Health evaluation, including in the context of the WHO Pandemic Agreement, and despite advances in One Health operationalisation, implementation, and institutionalisation, global consensus on how best to measure One Health progress has not been reached. Although several economic evaluation frameworks, metrics, and valuation methodologies of potential relevance for One Health exist (tables 1, 2, and 3), and although some One Health-specific evaluation frameworks have emerged in recent years, including the Global One Health Index (as discussed in section 6.5), no single tool or integration of existing tools has been adopted on a large scale. The establishment of national One Health action plans and the integration of One Health into pre-existing national strategies or policies therefore provide opportunities for identifying indicators and developing contextualised One Health evaluation frameworks.

One Health governance should ensure continuous involvement of communities (including Indigenous communities) and all other stakeholders. Transdisciplinary processes that prioritise early involvement of local stakeholders are important in this regard and for successful, context-specific implementation of One Health interventions. The Preventing Zoonotic Disease Emergence initiative is one example of an endeavour that has prioritised inclusive and participatory processes.⁵⁴⁶ The One Health Quadripartite's One Health Joint Plan of Action and its implementation plan, which includes One Health activities, deliverables, and timelines at both local and global levels, could provide much-needed guidance for harmonising global and local governance.¹⁷⁴ In addition, the Joint Plan of Action's six interdependent action tracks are all highly relevant for local communities. These action tracks cover prevention, surveillance, and control of emerging, re-emerging, and endemic zoonoses; AMR; and reduction in food safety risks, and promote a One Health-oriented strengthening of health systems and a better integration of environmental issues. Unfortunately, the Joint Plan of Action does not explicitly address NCDs in its current plan, despite the relevance of NCDs within a One Health perspective (as discussed in section 5).

National implementation of the Joint Plan of Action will require consideration of governance processes at different scales. For example, to enhance the contributions of One Health towards strengthening health systems, local authorities and stakeholders from the health-systems building blocks should participate in the decision-making process.⁶⁴⁷ Furthermore, local, interdisciplinary, transdisciplinary, and multisectoral workforces need to be established, and equitable, cost-effective financing needs to be secured for One Health operationalisation, implementation, and institutionalisation at all governance levels (as discussed in section 8.2.2).

Governance for One Health entails integration of the One Health approach into all relevant policy domains. This integration will help to promote healthy socioecological systems and to reduce the unintended consequences of some health interventions, including the asymmetric distribution of attention or resources. When expanding One Health across policies, tensions between disciplines and sectors are likely to emerge, and a solution will require robust One Health infrastructure, sufficient political will, One Health leadership and stewardship for healthy socioecological systems, a balanced negotiation of varying priorities, and exploiting the unifying power of joint One Health advocacy. To achieve viable One Health governance, how various stakeholders stand to win or lose from specific One Health policies and implementation pathways; what can be done to minimise harm and unintended consequences; and how inclusion, transparency, adaptability, and consensus can best be ensured need to be examined. These questions and others warrant urgent consideration by all One Health stakeholders and demand transformative and sustainable change at all governance levels.

In summary, the aim of One Health governance is to facilitate and sustain a normative shift in service to equitable, sustainable, and healthy socioecological systems, anchored in the One Health principles proposed by this Commission (panel 2). This aim demands accountability from all stakeholders, as well as interdisciplinary, transdisciplinary, and multisectoral collaboration, enabled and supported by One Health coordinating mechanisms and infrastructure, institutional innovation, and sufficient financing (as discussed in section 8.2.2).

8.2 One Health economics and funding

8.2.1 The need for an economic paradigm shift

As discussed in section 6.5, several studies have shown the costs and benefits of One Health interventions compared with non-One Health interventions.^{485,486} However, to address intersecting global health and sustainability challenges, such as climate change, pollution, biodiversity loss, land use change, increasing emergence of zoonotic infections of pandemic potential, AMR, NCDs, food security concerns, and water scarcity,

new One Health-based evaluation frameworks and indicators need to be created, and the prevailing growth-based and anthropocentrically oriented global economic system should be radically rethought. Improvement in economic indices, such as GDP, have been shown to be correlated with poverty reduction and overall improvement in the health status of billions of people in LMICs throughout the past decade.^{506,648} However, the aforementioned gains have not been equitably achieved and distributed,⁶⁴⁹ and have come with devastating costs to the environment, including wildlife and ecosystems.⁶⁵⁰⁻⁶⁵² The so-called green growth proposition that GDP-defined economic growth can be decoupled from harmful environmental impacts,⁶⁵³⁻⁶⁵⁵ and the suggestion that this can be realised equitably,⁶⁵⁶ are compelling. However, evidence that these ideas can be realised at the rate and scale necessary to sustain the planet is scarce.⁶⁵⁷⁻⁶⁵⁹ Natural capital is finite. As a global society, we are already operating unsustainably and inefficiently beyond the planet's capacity. In many wealthy nations, the marginal benefits of increased GDP are diminishing or are nearing or have reached a point at which the benefits of more growth are outweighed by the costs to human welfare and the environment.^{649,660-663}

At the heart of a much-needed economic paradigm shift are crucial questions about how to replace the current resource-extracting, ecologically destructive, and inequity-generating global economy with one that prioritises equity, sustainability, and wellbeing.⁶⁶⁴ Current blueprints and initiatives that advocate for alternatives to growth and that support such a shift include Doughnut Economics,^{665,666} the Circular Economy,^{667,668} and the Wellbeing Economy.^{669,670} Arguably, the most recent high-level rethinking of the relationship between sustainability, wellbeing, and the global economy has been advanced by the WHO Council on the Economics of Health For All. This thinking reframes health as a public policy objective, with emphasis on the interdependent relationship between the economy and health, and as both an economic sector and a crucial objective for all other sectors and global economies.⁶⁷¹ This initiative, like the Geneva Charter for Well-Being, recognises that the conceptualisation and measurement of wellbeing extends beyond classic economic indices to include physical, psychosocial, and spiritual wellbeing, as well as human rights, social and environmental justice, sustainable development, equity, and peace.⁴⁷⁶

A systemic and socioecological One Health transition will require prioritisation of sustainability and the health of humans, other animals, plants, and the shared environment. Heterodox economic paradigms, which not only promote a reduction of material excess, but also recognise the damage that growth has caused, including in the form of climate change, pollution, biodiversity loss, land use change, and increased emergence of zoonotic infections of pandemic potential, require a change in mindset, globally and at all levels of governance

and society. These paradigms also recognise a move towards meaningful alternatives to overconsumption that prioritise wellbeing among humans and all other life, as well as the restoration and protection of ecosystems. Funding for the research that will inform such economic paradigm shifts is needed.

8.2.2 Financing One Health within current systems

The realisation of an economic paradigm shift will take time and must therefore be pursued in tandem with efforts to mainstream and institutionalise One Health within the prevailing global economic system. This aim necessitates innovative financing. Tracking funding flows and financing models for One Health at various governance levels is an important early step towards measuring the current gaps. Multipartner trust funding provided by the Quadripartite Joint Secretariat on AMR and the World Bank-led Pandemic Fund could provide early data.^{672,673} The World Bank estimates that approximately US\$1.9 billion to \$3.4 billion is required annually in LMICs to build and operate effective disease prevention and control systems. In 2021, the World Bank had more than \$1.5 billion invested in One Health operations, with an emphasis on reducing risks from emerging infectious diseases.⁶⁷⁴ In addition, support for One Health-aligned research, capacity building, and operationalisation at local and national levels in many countries has been provided by several global health funders and can be measured and tracked once clear criteria are established. These criteria should clarify what qualifies as One Health funding, as not all funds that support One Health causes are labelled as such.

A range of national and international financing mechanisms can help to mobilise the funds and other resources necessary for pursuing the One Health ambition of equitable, sustainable, and healthy socioecological systems, but equitable One Health financing must be prioritised, and the funding disparities that have existed within the One Health field must be addressed. These disparities include the disproportionate funding between the human, animal, and environmental sectors and the disproportionate attention that classic One Health concerns, such as zoonoses, have received compared with environmental concerns, such as climate change, biodiversity loss, and pollution. A collaborative process must be established to identify an evidence-based set of high-priority investments for One Health that ensure an equitable distribution of resources across the socioecological domains of One Health concern; between human, animal, and environmental sectors; and between HICs and LMICs, thus addressing international power imbalances and empowering LMICs.

Innovative finance is a set of solutions that aim to raise and channel both public and private funds and resources beyond those provided through traditional funding mechanisms (particularly development aid) and towards

persistent global concerns.⁶⁷⁵ Innovative financing might involve microcontributions, debt-to-health swaps, market-based financial transactions, and support for public–private partnerships. Examples of innovative financing for One Health implementation specifically could include a Global Fund-inspired model⁷⁶ of development impact bonds,⁶⁷⁶ or the Global Financing Facility, which is a country-led global partnership that provides catalytic financing and technical assistance to LMICs to develop and implement national health plans that scale up access to affordable, high-quality care for women, children, and adolescents.^{677,678} Key to the Global Financing Facility is blended finance,⁶⁷⁹ which combines commercial funding with loans that are extended on more generous terms than market loans (ie, concessional financing),⁶⁸⁰ and which the Organisation for Economic Co-operation and Development defines as “the strategic use of development finance for the mobilisation of additional finance towards sustainable development in developing countries”.⁶⁸¹ Various instruments for addressing debt, including bond offerings (eg, development impact bonds, social bonds, green bonds, and sustainability bonds), could be leveraged by One Health. The International Finance Facility for Immunisation, which is crucial for Gavi, the Vaccine Alliance, issues vaccine bonds on capital markets against long-term donor pledges and is another form of innovative impact investment and financing that could be amenable to One Health applications.^{682,683}

Innovative finance in many instances involves leveraging capital from the private sector based on public-sector funders or philanthropists providing an attractive return on investment. This model naturally risks leaning towards more profitable and scalable products and services (eg, drugs and vaccines targeting pandemic-prone diseases) and neglecting preventive and holistic One Health measures. In other words, return on investment is a precondition for economic participation from private investors.⁶⁸⁴ Strengthening the private sector’s role in governance for One Health should therefore avoid a so-called financialisation of health approach, which has geoeconomic and geopolitical consequences⁶⁸² including the reinforcement of a financial culture in which short-term and commercial gains are prioritised over the long-term One Health goal of equitable, sustainable, and healthy socioecological systems. Additionally, awareness is needed as to the influence of other private-sector entities, such as private foundations,⁶⁸³ which have vast resources and donate to governments and international organisations, such as WHO and UNICEF. These entities also directly influence national and international policies. This influence is not necessarily negative, but decisions of consequence for the prioritisation of One Health policies and interventions should nevertheless not be subject to undue private influence, be it from private for-profit entities (ie, business) or private not-for-profit entities (eg, foundations, charities, and trusts).^{685–688}

For more than a decade, the World Bank has incorporated One Health into its development financing portfolio and has generated important reference material for operationalising, implementing, and institutionalising the One Health approach in LMICs.^{51,68,689} In 2022, a One Health investment framework to reduce pandemic risks was suggested by the World Bank, with a strong emphasis on One Health and disease prevention,⁶⁹⁰ and One Health has both been mainstreamed into existing World Bank funding mechanisms and programmes and included in new ones.^{690,691} In June, 2022, the World Bank also confirmed the establishment of a funding programme for strengthening pandemic prevention, preparedness, and response, based on a financial intermediary fund arrangement and with a strong focus on One Health.^{672,692} With technical support from WHO, the World Bank’s new financial intermediary fund has a strong focus on One Health.^{672,693}

The need for sustained and sufficient One Health financing applies to both LMICs, where funds for One Health capacity building are delivered under the framework of research grants and development assistance, and HICs, where the future of funding for One Health is uncertain and where funding shifts are needed. With most funding in LMICs coming from overseas development assistance, priority setting, design, and implementation could be biased towards the interests of HICs or development partners. Therefore, the importance of transparent and equitable funding between institutions and researchers in LMICs and those in HICs, as well as transdisciplinary approaches to inclusive participation and community engagement, cannot be overemphasised. The Research Fairness Initiative has developed a series of dynamic tools that encourage fair research and innovation partnerships as the key to research excellence and innovation,⁶⁹⁴ which can be applied directly to One Health.

Both financing strategies and the application of funds for One Health should be carefully coordinated among donors to ensure that global objectives, such as those of the WHO Council on the Economics of Health for All,⁶⁷¹ and national action plans, particularly in countries within the same regions, are aligned and receive adequate attention, including with regard to outcome monitoring, evaluation, and reporting (panel 8). Strategic partnerships among funders to target specific One Health challenges that require crucial multisectoral actions need to be fostered. Long-term goals and commensurate investments are also needed, given the temporal and spatial dynamics of socioecological system changes. As an example, the systemic integration of One Health into formal educational systems will require strategic long-term investment.

In summary, a paradigm shift in local, national, and international budgetary allocation and financing is urgently needed, along with novel economic frameworks that are focused on realising and sustaining equitable and healthy socioecological systems.

Panel 8: The private sector in One Health: a complex landscape in need of change

Businesses and the private sector are broadly growth oriented and focused on solvency and financial sustainability, as defined by the global financial system. Therefore, if an economic activity or project that informs investment decisions is One Health-aligned, share price, profitability, and financial sustainability will be redefined and the company will be positioned to fulfil its profit-oriented mandate without costs to, and potentially while advancing, health and sustainability.

From a corporate pharmaceutical perspective, the structure of the research and development pipeline is driven by the cost of developing products, the likelihood of them being approved, and the expected market attractiveness and profitability.^{695,696} The returns generated by One Health-oriented investments often do not fit into the short-term profit maximisation schemes that are prioritised:⁶⁹⁷ for example, the speed with which mRNA vaccine technology was channelled into the development of vaccines for COVID-19 only in 2020 after having been discovered in the 1970s, the exceptional profitability within the global market for mRNA vaccines during the COVID-19 pandemic,^{698,699} and the vaccine inequity that prevailed. Market conditions therefore need to be economically rebalanced to allow for One Health-aligned pharmaceutical investment in research and development.^{700,701} Private-sector engagement in One Health is needed to actively co-shape One Health-oriented markets, and to codesign processes that can catalyse the innovation necessary to advance concrete, mutual One Health goals.⁷⁰²

A strong case can be made for promoting a One Health-oriented private sector. By reorienting consumer views, creating possibilities for consumption choices that are One Health-aligned, and conceptualising business as a force for good,^{703,704} companies could achieve sustainability-oriented, long-term aims in ways that enhance innovation, brand reputation, stakeholder relations, and sales, thus synergising societal value creation and the financial interests of companies. A One Health lens can play a pivotal role in creating long-term and stakeholder-oriented business models that align with other indicators. In terms of financial performance, investors would consciously apply global health-based and, by extension, One Health-based non-financial

factors in their analyses and assessments of investment opportunities.^{705,706}

Several factors, including donor-driven and technocratic agendas, short-term funding, market failures, and economic conflicts of interests pose challenges to multisectoralism, interdisciplinarity, and transdisciplinarity. Crucial questions have been raised about the extent to which government financing aimed at incentivising private investments in research and development are operating at the expense of health equity. The Trade-Related Aspects of Intellectual Property Rights (TRIPS) agreement, for example, incentivises research and development for vaccines, diagnostics, medicines, and other interventions by offering a period of patent protection that enables patent holders to charge considerably higher prices than the competitive market would allow, with potentially severe consequences for affordability and equitable access. Moreover, as a market force modifier, TRIPS does not incentivise research and development for medicines and other interventions for which no market exists (eg, medicines and interventions targeting diseases suffered by people who cannot afford them at any price and for whom government safety nets are not available). TRIPS is hence among the existing market force modifiers that require revision or mitigation (or both) if the One Health approach is to succeed. TRIPS underscores the incompatibilities between the One Health approach and the prevailing economic order and market system, the importance of addressing how the private sector currently influences global health governance, and the need for a One Health-informed, sustainability-oriented, and equity-oriented alignment of private and public contributions to global health and development.

Engagement of the private sector is essential for implementing the One Health approach, particularly when pandemic prevention, preparedness, and response is taken into consideration. For example, during the COVID-19 pandemic, big tech companies profited considerably, but were also crucial to generating, directing, and redirecting the public to the most up-to-date, verifiable information, in addition to developing and repurposing systems and technologies to support the provision of health care and other services.⁷⁰⁷

8.3 One Health knowledge

Equitable practices of knowledge production, integration, and sharing are an essential premise for advancing the One Health paradigm shift towards healthy and sustainable socioecological systems.^{708,709} Knowledge involves a wide repertoire of cognitive domains, as well as values, attitudes, and beliefs, which emerge, evolve, and are negotiated and disseminated through multiple channels, including education, media, and personal and professional experience. Fundamentally, the power of One Health is in the integration and real-world harnessing of diverse forms of knowledge, within an agenda that prioritises inclusivity, interdisciplinarity,

transdisciplinarity, co-construction, and shared accountability. As such, knowledge constitutes a crucial avenue for operationalising, implementing, and institutionalising One Health.

To achieve the goal of healthy and sustainable socioecological systems, a global, society-wide appreciation of One Health values (the ethos proposed by this Commission in panel 2) is needed. One Health must also continue to evolve in alignment with these values. Reaching these goals requires recognising that One Health spans a vast range of knowledge and practice and appreciating the added value that is generated by integrating the unique contributions of each discipline,

sector, and knowledge tradition that One Health comprises. In addition, One Health knowledge must be both global in reach and context-relevant (ie, accessible to and applicable for all people around the world), as well as intergenerational by design, with an emphasis on bidirectional dialogue and flows of knowledge. Young generations are socially engaged, digitally connected, and in possession of tacit knowledge that can enrich the discourse around sustainability and health, as well as engender the innovation needed for operationalising, implementing, and institutionalising One Health. One Health knowledge must also be inclusive, including with regard to the knowledge possessed by local communities and Indigenous knowledge systems, which are grounded in the inextricable link between the health of people, animals, plants, and the wider environment, and which have built a rich yet marginalised knowledge base around this link for thousands of years.

8.3.1 Advancing the co-production and dissemination of One Health knowledge

Given the silos within which disciplines, professions, governmental ministries, and funders continue to operate, the current systems for education, research, and, at large, knowledge production, exchange, integration, translation, and dissemination are predominantly not structured to accommodate and advance the One Health paradigm shift. Institutional reorientation and increased financial investment in interdisciplinarity and transdisciplinarity are needed, with several pan-university One Health initiatives and some funders who have initiated One Health-focused and One Health-aligned financing streams for research leading the way.^{710,711} The One Health approach should be integrated throughout all educational levels and programmes, and especially in domains in which One Health is highly relevant but receives insufficient attention, such as medical schools and the health sciences more broadly. This integration is important to equitably advance health throughout the socioecological system and ensure that all know how they can contribute and develop the capabilities to do so.⁷¹²

To address the current global health and sustainability challenges, One Health education and research capacity must be enhanced globally, which requires increased investments. Institutions in LMICs especially require increased investment, as they host several One Health networks and initiatives but are constrained in terms of resources (as discussed in section 8.2.2). One way to strengthen domestic capacity for One Health in LMICs is by establishing and sustaining partnership networks or consortia for international collaboration, not only between HICs and LMICs, but also within and between LMICs. Three examples of such networks are the Southeast Asia One Health University Network,⁷¹³ the Africa One Health University Network,⁷¹⁴ and the Africa One Health Network.⁷¹⁵

Furthermore, greater intellectual and practical integration of complex adaptive systems,^{716,717} post-normal science (a field dedicated to problem solving in contexts of uncertainty, high stakes, and urgent needs for decisions), socioecological systems theory,⁷¹⁸ and the concept of resilience within One Health epistemology and pedagogy are needed.⁷³ Methodologies from futures thinking and foresight that promote narratives, creative problem solving, diverse possibilities, and group analysis of complex science-policy problems should also be mainstreamed, and these should engage with megatrends and potential scenarios in the interest of developing robust, resilient, reflexive, and adaptable policies and systems.⁷¹⁹ Additionally, the fields of sustainability law and legal epidemiology could offer opportunities to define legislative and policy priorities across different sectors.⁷²⁰

Moreover, additional efforts in institutional and policy analysis are needed to identify opportunities for and challenges to One Health operationalisation, implementation, and institutionalisation, considering wider political economies. In this regard and others, One Health knowledge integration entails appreciating the differences between diverse knowledge systems and bridging the gaps that persist between academia, policy, the private sector, and local communities, in the interest of fostering evidence-to-policy and knowledge-to-action translations. As an example, strong, meaningful, and respectful engagements with local communities (eg, farming and fishing communities) are beginning to emerge in some One Health collaborations worldwide.^{721,722} One Health collaborations that explicitly include Indigenous populations and knowledge are especially needed.⁷²³

8.3.2 Education, professional development, and the cultivation of a One Health citizenry

One Health operationalisation, implementation, and institutionalisation will not be possible without far-reaching and sustained efforts in education, knowledge co-creation, workforce development, and the cultivation of a universal and society-wide One Health citizenry, realised across different scales of funding, contribution, vision, and intensity, from modest grassroots efforts to sizable international networks.

One Health must be embraced as the overarching framework for the education and training of a new cadre of professionals who will be willing (possessing the right mindset), able (equipped with the knowledge), and enabled (supported by empowering structures) to drive systemic and sustainable transformations that safeguard and advance health among humans, other animals, plants, and the myriad of other biotic and abiotic elements in our shared ecosystems. Curriculum and pedagogy reforms within the education sector are necessary, including the adoption and implementation of a standardised framework for core One Health competencies (ie, “the desired

fundamental knowledge, skills and attitudes of a person trained and working in One Health⁷²⁴), at various levels of higher education and professional training. The Network for Evaluation of One Health conducted a review of previously proposed One Health competencies and competency domains and, taking into consideration the OHHLEP definition of One Health and a conceptualisation of One Health that is increasingly socioecological systems-oriented, published an updated collection of nine core One Health competencies.⁷²⁴

Moreover, national One Health pedagogical task teams with diverse disciplinary membership can facilitate participatory processes, including for the purpose of co-designing educational and training materials and mainstreaming One Health within the education sector, including through open-access, online courses.⁷²⁴⁻⁷²⁷ Within the education sector, courses and programmes, including in practical field settings, can allow students to apply One Health principles and engage in experiential learning. Examples are internships, exchanges, field research days, and greater academia–policy–civil society collaborations that support One Health translation, such as from evidence to policy and from knowledge to action. Professional One Health certification can be developed and, because One Health knowledge will continue to grow and evolve, continuing professional education is essential and the concept of lifelong learning must underpin One Health education and workforce development. In terms of content, One Health education must emphasise not only material realities, such as biology, ecology, and epidemiology, but also their social, political, economic, cultural, and philosophical dimensions. This emphasis requires meaningful engagement with faculties of the social sciences, which are classically marginal in One Health circles. Moreover, as the true power of One Health knowledge is in its application in the real world, professionals would also need foundational training in leadership and interpersonal skills, including communication, negotiation, teamwork, and multisolving (ie, the ability to address multiple challenges through a cohesive investment and solution). The One Health education framework must also embrace the vision and recommendations of the 2010 *Lancet* Commission on health professionals for a new century and expand its purview to include all professionals as transformative change agents for the worldwide advancement of equitable, sustainable, and healthy socioecological systems.⁷²⁸

The cultivation of a universal, society-wide One Health citizenry must begin by fostering One Health literacy among children and young people, through the incorporation of One Health principles and introductory scientific content in primary, middle, and secondary education. This content should encompass the values, technical knowledge, and practical skills necessary to translate One Health into daily practice, be fully transparent about the facts, highlight where uncertainty exists, avoid propaganda-type pessimistic framings of

anthropogenic change, be sensitive to age, and emphasise positive and solutions-oriented discussions.⁷²⁹ Initiatives such as One Health Lessons, which is a global library of One Health syllabi for different grade levels that has been translated into multiple languages, offer important contributions to empowering teachers to bring One Health into their classrooms.⁷²⁷ One Health literacy also presupposes media literacy (ie, a capacity for accessing, analysing, evaluating, and creating media in a variety of forms), as well as a transformation of the relationship between media and science, with several trends paving the way. These trends include science journalism, participatory solutions for integrating science communication within research projects, and other efforts to make science-based information publicly accessible through digital media, social media, and other platforms that researchers use to communicate directly with the public.⁷³⁰⁻⁷³³ More research is needed into the potential value and risks of such trends.⁷³⁴ Also needed is increased understanding of the ways in which One Health can be embedded in journalism, with journalists embracing a One Health approach to investigation and reporting that is grounded in a holistic appreciation of the links between the health of humans, animals, and the environment.⁷³⁵

Operationalising One Health will also require strong leadership and an understanding of the concept at high levels of the political spectrum, as is being advanced by the One Health Quadripartite and World Bank.^{174,690} Strategies for promoting, translating, and disseminating One Health are also needed to help key stakeholders (including political leaders, policy makers, and private-sector actors) to become more One Health literate, to promote holistic thinking around health at the human–animal–environment interface, and to ensure that One Health knowledge and innovation is integrated within sound decision making.

In conclusion, the emergent One Health knowledge system—built on a continuously expanding and inclusive knowledge base, diverse and competent professionals equipped to become change agents, and empowered citizens who espouse One Health values and principles—has the potential to generate transformative, systemic change for the achievement of sustainable health for all constituents of the socioecological system.

9. Recommendations of the *Lancet* One Health Commission

One Health knowledge and practice are rapidly evolving. Coupled with the many variables involved in One Health, this evolution means that interactions and outcomes are constantly changing. Following the science and being able to pivot when called for is crucial, even if not conventionally politically expedient. Policy makers must be trusted. When adjustment is needed, all must be on board, which presupposes that recommendations and all associated metrics, targets, and indicators are

Panel 9: Recommendations from the Lancet One Health Commission**1 Institutionalise One Health within global, regional, and national governance architecture**

At the global level, a One Health governance framework, led by a sufficiently resourced One Health structure (ie, with adequate funding, a dedicated full-time workforce, and legal authority) should be developed. Ideally, the One Health Quadripartite could evolve to fulfil these functions. Established institutions and governance arrangements should be leveraged where they exist and new ones should be developed where there are gaps. The following process is advised:

- A Commit to an ambitious vision for the scope of this global structure and governance framework, among all relevant international organisations
- B Develop theories of change and take stock of the current state: appraise what exists, how is it performing, and where reform and novelty are needed
- C Design a future state, comprising governance bodies, resource mobilisation bodies, scientific bodies, and stakeholder bodies
- D Engage global and multilevel discussion among all stakeholders (eg, political leaders, researchers, civil society, private sector, and funders)
- E Establish new legal mandates for novel establishments, transition arrangements for the integration of existing establishments into new structures, and accountability mechanisms
- F Implement the framework, monitor and evaluate, and revise and evolve as relevant

At the regional and national levels, all government ministries, together with all relevant sectors and stakeholders, should continue to develop and implement governance reforms, including: One Health strategies and action plans, One Health platforms and multisectoral coordinating mechanisms, context-adapted monitoring and evaluation frameworks, and joint funding for multiministry and multiagency work. At all levels, diversity (including disciplinary, sectoral, cultural, and gender) and community engagement must be ensured.

2 Achieve coherent One Health policy and governance through One Health in all policies

Embed One Health principles (ie, holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability) and explicitly address the links between human, animal, plant, and ecosystem health within existing and emerging codes, conventions, frameworks, guidelines, regulations, agreements, action plans, agendas, and policy documents. Primarily responsible should be the proposed global One Health structure (recommendation 1), including the international organisations it convenes, as well as a diverse, interdisciplinary, and multisectoral commission of scientists and policy makers. These parties should also be tasked with the development of a joint action plan for One Health in all policies

and a guide or toolkit for implementation at the national and subnational levels.

At the national and subnational levels, One Health platforms and multisectoral coordinating mechanisms, together with diverse, interdisciplinary, and multisectoral commissions of scientists and policymakers, should identify appropriate policy windows and integrate One Health in all relevant national and subnational strategies, action plans, and policies.

Representation from Indigenous and local communities should also be ensured.

3 Integrate human, animal, and environmental health and surveillance systems

Integrated One Health surveillance systems should be developed and implemented to monitor infectious diseases, antimicrobial resistance, non-communicable diseases, and the overlaps and human-mediated changes to the socioecological system that drive the emergence, spillover, and spread of infectious agents (eg, wildlife habitat loss, land use change, biodiversity loss, and climate change). Preconditions for successful One Health surveillance systems should be ensured, including legal provisions to facilitate equitable sharing of intellectual property; frameworks for data sharing, harmonisation, and integration or triangulation; operational capacity; a fair distribution of costs and gains (globally and across sectors); and continuous engagement with communities (including Indigenous).

Above and beyond One Health surveillance systems, One Health systems, potentially conceived more broadly as integrated human, animal, and environmental health systems, are a long-term vision. Over the next decade, integration of select health-care sites and systems can be piloted at the local level. At the international level, the proposed One Health structure (recommendation 1) and other relevant stakeholders should develop a joint action plan for One Health systems and thereafter operationalise, implement, and institutionalise One Health systems as relevant.

4 Achieve a transformation of global economics that prioritises equity, sustainability, and wellbeing as the key measures of progress

At the global level, a multisectoral commission of UN agencies, stakeholders, and experts, including from the private sector, should:

- A Appraise existing, generate new, and disseminate evidence regarding the inadequacy of gross domestic product-defined growth for achieving and sustaining healthy socioecological systems; viable alternatives should be identified
- B Facilitate the global, regional, and national adoption of economic metrics that are aligned with the One Health ethos and, as needed, develop novel economic metrics to quantify and measure equity, sustainability, and wellbeing

(Continues on next page)

(Panel 9 continued from previous page)

5 Operationalise, implement, and institutionalise adequate, innovative, transparent, and equitable financing for One Health

Novel funding mechanisms for One Health should be identified or established. Strategic partnerships among funders should be forged to ensure sufficient financing for One Health implementation and, therein, an equity-oriented distribution of resources across sectors and between low-income and middle-income countries and high-income countries. The World Bank should drive these efforts, together with regional development banks and the proposed One Health structure (recommendation 1). Priority challenges to be targeted span climate change, biodiversity loss, infectious diseases, antimicrobial resistance, non-communicable diseases, and pandemic preparedness. This process should include the following:

- A Existing funding mechanisms and programmes, including the World Bank-led and WHO-supported Financial Intermediary Fund for Pandemic Preparedness and Response, should be leveraged for One Health; other innovative financing models and novel financing partnerships of potential relevance for One Health include widely sourced microdonations, blended finance, novel private-public partnerships, and impact investments, but more traditional funding mechanisms (eg, official development assistance, philanthropic donations, fiscal policies that redistribute income and wealth, and smart taxation) should also be mobilised
- B Cases that show return on investment should be documented
- C Any remaining needs for financing should be described and appropriate, and novel funding mechanisms should be established, if and as needed

6 Harness the full potential of the private sector, including its extensive resources, influence, and amenability to innovation, to become One Health leaders who promote equitable, sustainable, and healthy socioecological systems

The following combination of One Health-aligned corporate governance reform, innovation, public-private partnerships, and sustainable supply chain management is advised:

- A Companies must incorporate the One Health principles of holism and systems thinking, epistemological pluralism, equity and egalitarianism, and stewardship and sustainability into their corporate social responsibility policies, long-term business strategies, workforce training, and environmental, social, and governance reporting frameworks
- B Private-sector entities involved in health care, biotechnology, pharmaceuticals, food production, and agriculture should increase investments in One Health-aligned research and development and promote the equitable production of healthy and sustainable products in

partnership with low-income and middle-income countries, including vaccines, medicines, and food

- C Companies in industries such as agriculture, food production, and retail, must implement socioecologically healthy and sustainable sourcing, production, and distribution practices; this implementation must include the promotion of animal welfare, environmental restoration and conservation, and the abandonment of socioecologically harmful practices, such as deforestation, encroachment on wildlife habitat, unsustainable harvesting, and pollution
- D The private sector needs to adopt integrated surveillance systems and data-sharing frameworks across human, animal, and environmental domains, including in food production and agriculture, which includes real-time disease monitoring and response, compound libraries and technologies for the development of health products, and interventions to improve pandemic preparedness and health equity

7 Mainstream One Health throughout the higher education sector, as the overarching framework for the education and training of a new cadre of professionals to drive and sustain systemic transformations

Interdisciplinary and transdisciplinary One Health pedagogical task forces, interlinked at international, regional, and national levels, should be established to:

- A Achieve consensus around a core set of One Health competencies for higher education, integrate them within national higher education qualification frameworks, and institutionalise them within all accredited institutions of higher education, to guide and harmonise the integration of One Health across all disciplines, programmes, and curricula
- B Co-design an international One Health teaching repository of lecture materials and other resources that enables One Health to be flexibly integrated within all disciplinary curricula
- C Provide resources and support to increase capacity and capability for interdisciplinary One Health education within institutions of higher education and among faculty, building on evolving approaches to innovative teaching and learning that equip students to negotiate the need for urgent decisions and action in the midst of complexity and uncertainty
- D Establish and implement a monitoring and evaluation framework for assessing the institutionalisation of One Health competencies and mainstreaming of One Health throughout the higher education sector

8 Cultivate enabling conditions for One Health research and knowledge production

Establish interdisciplinary and transdisciplinary One Health research task forces, interlinked at international, regional, and national levels, whose mandate includes the following:

(Continues on next page)

(Panel 9 continued from previous page)

- A Advance enabling conditions for One Health research and knowledge production, including a paradigm shift towards equitable, inclusive, and participatory knowledge production that engages local communities and Indigenous expertise, funding for interdisciplinary and transdisciplinary One Health research, and measures of success for researchers that move beyond publication numbers and impact factors to also encompass social and policy impact, as well as knowledge exchange within communities
- B Provide resources and support to build capacity and capability for interdisciplinary and transdisciplinary
- D Collaboration among researchers, appreciating that interdisciplinary and transdisciplinary research presupposes strong disciplinary expertise and new ways of thinking and collaborating
- E Develop a global One Health research agenda and adapt it as relevant at regional and national levels, which will entail, among other things, mapping knowledge gaps, supporting research to address them, and annual assessment and reporting; knowledge gaps include One Health metrics and investment cases, gender and One Health, urban One Health, digital One Health, and One Health and non-communicable diseases, including brain and mental health

9 Achieve a One Health-literate global citizenry

One Health principles and knowledge need to be mainstreamed, which requires the integration of diverse knowledge systems, intergenerational knowledge exchange, and the development of a comprehensive evidence base that advances equitable, sustainable, and healthy socioecological systems. This integration also presupposes consistent, meaningful, and respectful engagement with Indigenous expertise and diverse local communities, and that knowledge will be translated into action and evidence into policy. The UN Educational, Scientific and Cultural Organization, the proposed One Health structure (recommendation 1), the proposed One Health pedagogy and research task forces (recommendations 7 and 8), and other key stakeholders should collaboratively develop a joint action plan for One Health literacy and oversee the process of adaptation and implementation at national levels. An overarching framework for monitoring and evaluating progress towards a One Health-literate citizenry should also be developed and implemented. The joint action plan should account for, but not be limited to, the following:

- A One Health operationalisation, implementation, and institutionalisation must be advanced through public-private partnerships between the private sector and governments, non-governmental organisations, civil society, academia, and international organisations
- B One Health literacy begins at birth; One Health knowledge and principles must be mainstreamed within all levels of preschooling and primary and secondary schooling
- C One Health literacy implies building capabilities and capacity among the younger generation, who will shoulder the

burden of the evolving planetary crises and be held accountable for change in forthcoming decades

- D One Health literacy entails professional lifelong learning and development, facilitated through flexible, ongoing opportunities to acquire additional knowledge and skills
- E One Health literacy at all levels of the political spectrum is a prerequisite for systemic governance transformations in service to equitable, sustainable, and healthy socioecological systems

10 Achieve a One Health-oriented transformation of food systems in service to equity, sustainability, and health

A joint action plan for equitable, sustainable, and healthy food systems (ie, food systems that sustainably and equitably meet the food and nutrition needs of the human population, while promoting health and wellbeing among humans, other animals, plants, and the environment at large) should be established and implemented at the international level, and translated at the national level. Implementation of this plan should take place through a process of equitable collaboration and policy integration across all relevant sectors and at global, regional, national, and subnational levels. The joint action plan should address key food systems challenges, including the triple burden of undernutrition, overnutrition, and micronutrient deficiency; zoonotic and foodborne diseases; antimicrobial resistance; greenhouse gas emissions and climate change; and environmental degradation and destruction driven by agricultural expansion. The One Health approach to food systems must also:

- A Challenge the prevailing corporate systems that drive inequitable, unsustainable, and unhealthy production and consumption trends
- B Ensure that the right to adequate food and food security are achieved in tandem with food sovereignty (ie, sustainable and equitable food production and consumption systems, in which power lies with local producers and consumers)
- C Recognise the crucial role that the informal food sector plays in food security and livelihoods, as well as the need to support safer food production and exchange among informal producers and market stakeholders
- D Critically examine the financialisation of the food sector and trade liberalisation, and resist the pervasive and aggressive promotion of inexpensive, highly processed, and unhealthy foods
- E Hold industry and the private sector accountable for the health and sustainability risks that they bring to the food system, including by requiring the disclosure of environmental, social, and governance risks, to enable assessment and informed decisions among investors
- F Advance and operationalise the EAT-Lancet Commission's call for healthy, high-quality food systems that, among other things, reduce food waste by half and promote a dietary transition in service to sustainability and health

co-developed through respectful, collaborative, equitable, and inclusive processes involving all stakeholders, at all levels of society, and across all sectors.

Multiple relevant disciplines, sectors, and nations are represented in this Commission, by scientists and practitioners who are engaged in One Health research, capacity building, and implementation in local communities and at national, regional, and international levels. Several relevant stakeholders are also insufficiently represented in this Commission, which is particularly the case for rural communities in LMICs, Indigenous communities, and the private sector.

We offer ten recommendations for One Health operationalisation, implementation, and institutionalisation (panel 9); more details on target groups and timelines can be found in the appendix (pp 16–26). We present these as concrete, targeted, and scientifically robust contributions to what must be an ongoing and inclusive process of establishing context-adaptable goals, metrics, indicators, and timelines. Alignment with the One Health Quadripartite's Joint Plan of Action 2022–26 and Guide to Implementing the One Health Joint Plan of Action at the national level has been prioritised.^{174,736} The One Health High-Level Expert Panel has also published a theory of change and the One Health Quadripartite is planning to develop a monitoring and evaluation framework,^{737,738} for which these recommendations are of value.

Conclusion

The *Lancet* One Health Commission provides a cutting-edge appraisal of where One Health has come from, where it is now, and what a viable future should be. The Commission explicates the importance of the environment and the criticality of the One Health approach to surveillance, infectious diseases, AMR, NCDs, health systems, and food systems. The Commission calls for individual, community, organisational, national, regional, and international action to advance equitable, sustainable, and healthy socioecological systems. To guide and galvanise this action, the Commission proposes a One Health ethos and articulates key avenues and recommendations for One Health operationalisation, implementation, and institutionalisation, with a focus on governance, economics, and knowledge. Ultimately, this Commission is a testament to the pivotal role that One Health can play in 21st century health and sustainability agendas, as well as its centrality to the ever-changing socioecological system.

One Health was not mentioned in the 2030 Sustainable Development Agenda; however, the impact of the COVID-19 pandemic brought into acute focus the fundamental interconnections between humans, other animals, plants, and a myriad of other biotic and abiotic elements in the ecosystem, and, consequently, how

healthy sustainable socioecological systems could be achieved via a One Health approach. The consensus around One Health that has been built by the One Health Quadripartite and OHHLEP, which has been reinforced by the work of this Commission, is essential for addressing the threats to health posed by infectious diseases, AMR, NCDs, and planetary crises; harnessing data and artificial intelligence for disease surveillance and health-care delivery; forging equitable partnerships and inclusive collaborations; and generating necessary insight into socioecological interconnection. As such, One Health is a crucial catalyst in the pursuit of an equitable, sustainable, and healthy future, and must be central to the post-2030 global health and sustainability agenda.

Contributors

The *Lancet* One Health Commission is cochaired by ASW and JHA, with secretariats at the Centre for Global Health at the University of Oslo, the Department of Neurology and the Center for Global Health at the Technical University of Munich, and the Kumasi Centre for Collaborative Research in Tropical Medicine at the Kwame Nkrumah University of Science and Technology. ASW, JHA, and CMB drafted and revised the Commission together with an interdisciplinary and international group of co-authors serving as commissioners (HC, CGdN, BH, JZ, EMF, AO, WEH, BN-H, BA, DLH, FCJB, JS, JL, JC, JM, LB, MKL, MS, NX, OAH, PD, RRG, SSa, and TAS), advisors (AR, CA, EKR, GL, IC, LFT, OD, and YW), and scientific support staff (AKP, AH, LFR, MKA, and SSe). The second authorship position is jointly occupied by HC, CGdN, BH, and JZ who contributed extensively throughout the entire process of generating the Commission. The third authorship position is jointly occupied by specific working group leads (EMF, AO, GL, and WEH). HC and JZ also served as working group leads. DLH provided invaluable guidance on Commission formalities throughout the process of the Commission. All other authors are ordered alphabetically according to first name.

Declaration of interests

ASW is affiliated with two institutions that hosted commission secretariats and to whom funding for the Commission was allocated from two funding sources (the University of Oslo, which received funding from UiO:Life Science, and the Technical University of Munich, which received funding from the German Federal Ministry of Education and Research). CMB, AH, and SSe received compensation for their time spent working on the Commission as employees of the two institutions that were allocated funds for the commission (CMB at the University of Oslo, and AH and SSe at the Technical University of Munich). AH also supported the I-DAIR Pandemic Scientific Working Group in the role of a One Health expert. JHA and RRG are members of the *Lancet*–Chatham House Commission on improving population health post COVID-19. JZ, JL, MS, DLH, OD, and OAH are co-authors on papers in the *Lancet* Series on One Health and Global Health Security. CGdN received three grants for One Health activities in the 36 months before the submission of this Commission (Norwegian Government Grant for the National Wildlife Health Surveillance Programme Helseovervåkingsprogrammet for vilt, Research Council of Norway Grant for the arrangement of a Norwegian One Health Conference in November, 2022, and Horizon Europe European Joint Programmes One Health Grant for the Norwegian Veterinary Institute 2018–23). CGdN also received payment for a talk (at the World One Health Congress in Singapore, November 2022) and support for participation in two meetings and conferences about One Health (One Health Conference of the University of Queensland in September, 2022, and Canadian Global 1 Health Network annual meeting in Montreal in June, 2022). CGdN also had unpaid roles in the Wildlife Disease Association (president, 2019–21), Wildlife Population Health Specialty of the European College of Zoological Medicine (chair, 2018–23), and the International Union for Conservation of Nature and Natural Resources Species Survival Commission on Wildlife Health

(wildlife health specialist, 2018–23). EMF received grants for One Health research in the 36 months before this publication was submitted (from the Consultative Group for International Agricultural Research, UK Research and Innovation, and US Defense Threat Reduction Agency), as well as payment for a talk and support to attend a WHO meeting of relevance for One Health. EMF is also a member of the Senior Editorial Board for the CABI One Health Journal. AO received travel support from her institution, the Australian Centre for International Agricultural Research, to participate in a commission meeting. AR is funded by the Global One Health Network to coordinate and conduct research on One Health governance. JL is Chair of the International Working Group of the One Sustainable Health Forum (unpaid) and also coordinates and advises the Scientific Committee of the One Sustainable Health Forum (consultancy). JL received payment and travel support for speaking contributions to the World Veterinary Congress (Taipei, April, 2023), as well as travel support from the One Sustainable Health Foundation and Forum for the Geneva Health Summit (Geneva, May, 2022) and a meeting of the One Sustainable Health Foundation (Lyon, July, 2023). LFT received two grants to support One Health work in the 36 months before the submission of this Commission (German Federal Ministry of Economic Cooperation and Development One Health Research Education and Outreach Centre in Africa and Deutsche Gesellschaft für Internationale Zusammenarbeit International Alliance against Health Risks in Wildlife Trade) and is also a Soulsby Foundation trustee. MS is affiliated with the World Organisation for Animal Health (employment period 2018–21 and contract period 2022–23). MS also received three grants for One Health work in the 36 months before the submission of this Commission (from the World Bank International Finance Corporation for animal health country projects in Vietnam and Mongolia, from the Ministry for Primary Industries, New Zealand to work with the National Animal Welfare Advisory Committee as Chair for animal health project contracts, and from the Wellcome Trust for the Research Strategy Group for the Antimicrobial Resistance Policy Accelerator project, York University, UK). MS also received travel support from the Global Strategy Lab at York University to participate in an April, 2023 workshop on Antimicrobial Resistance Global Governance in Toronto, ON, Canada and from the World Organisation for Animal Health to participate in the World Organisation for Animal Health Global Conference on Emergency Management in April, 2023. MS is on the Global Preparedness and Monitoring Board for the WHO and World Bank accountability mechanism for pandemic preparedness and response monitoring. PD received funding in the 36 months before the submission of this Commission from US Federal Agencies (National Institutes of Health, the US Agency for International Development, the Department of Defense, the Defense Threat Reduction Agency, and the National Science Foundation) to support research on emerging diseases. PD is also affiliated with the Global Virome Project, as the Secretary and Treasurer. All other authors declare no competing interests.

Acknowledgments

We acknowledge funding received from the German Federal Ministry of Education and Research (grant number 01KA1912) and the University of Oslo (UiO: Life Science and Centre for Global Health) to support the Commission Secretariats in Munich, Germany, and Oslo, Norway. We thank Ingeborg K Haavardsson from the University of Oslo Centre for Global Health for her administrative leadership to the Commission, and Gabriella Rodriguez for her communications support. The German Secretariat support from Annette Abraham, Kim L Weiszhar, and Natasha Blumer at the Department of Neurology and the Center for Global Health at the Technical University of Munich is also acknowledged, as is the Ghana Secretariat support from Eric Boham, Louis Adu-Amoah, Lady Wright, James Deke, Mawuli Aglanu, and Neta Parsram at the Kumasi Centre for Collaborative Research in Tropical Medicine at the Kwame Nkrumah University of Science and Technology. We also thank Albert Awuah for his work on the graphics presented in this Commission. We thank Annie Royer, Michel Poitevin, and Yasha Feferholtz for their advice on various economics aspects of this work. We remember Ricardo Thompson, a commissioner who sadly passed away during the course of our work, and acknowledge his contributions to One Health globally.

References

- Zinsstag J, Waltner-Toews D, Tanner M. Why One Health? In: Zinsstag J, Schelling E, Crump L, Whittaker M, Tanner M, Stephen C, eds. *One Health: the theory and practice of integrated health approaches*, 2nd edn. Wallingford: CABI, 2021: 15–24.
- Zinsstag J, Mahamat MB, Schelling E. Measuring added value from integrated methods: towards a game theory of One Health. In: *One Health - the theory and practice of integrated health approaches*, 2nd edn. CABI, 2021: 410–18.
- Goralnik L, Nelson MP. Anthropocentrism. In: Chadwick R, ed. *Encyclopedia of applied ethics*, 2nd edn. San Diego, CA: Academic Press, 2012: 145–55.
- Purvis A, Hector A. Getting the measure of biodiversity. *Nature* 2000; **405**: 212–19.
- Humphrey M. *Preservation versus the people? Nature, humanity, and political philosophy*. Oxford: Oxford University Press, 2002.
- Assessment ME. *Ecosystems and human well-being: synthesis*. Washington, DC: Island Press, 2005.
- Stefanovic IL, Scharper SB, eds. *Introduction. The natural city: re-envisioning the built environment*. University of Toronto Press, 2012: 3–8.
- McKay FH, Taket A. *Introduction*. In: *Health equity, social justice and human rights*, 2nd edn. New York, NY: Routledge, 2020: 1–7.
- Crenshaw K. Demarginalizing the intersection of race and sex: a black feminist critique of antidiscrimination doctrine, feminist theory and antiracist politics. *U Chi Leg F* 1989; **1989**: 139.
- Chaudhuri MM, Mkumba L, Raveendran Y, Smith RD. Decolonising global health: beyond 'reformative' roadmaps and towards decolonial thought. *BMJ Glob Health* 2021; **6**: e006371.
- Fanon F. *The wretched of the Earth*. New York, NY: Grove/Atlantic, 1963.
- Choi BCK, Pak AWP. Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. *Clin Investig Med Med Clin Exp* 2006; **29**: 351–64.
- WHO. Food and Agriculture Organization of the UN, World Organisation for Animal Health. Taking a multisectoral One Health approach: a tripartite guide to addressing zoonotic diseases in countries. 2019. <https://iris.who.int/bitstream/handle/10665/325620/9789241514934-eng.pdf?sequence=1&isAllowed=y> (accessed June 2, 2025).
- Le Tourneau FM, Scott C. Editorial overview: resilience and complexity in social–ecological systems: theory, applications, and methods. *Curr Opin Environ Sustain* 2020; **44**: 44.
- Berkes F, Folke C, Colding J. *Linking social and ecological systems: management practices and social mechanisms for building resilience*. Cambridge University Press, 2000.
- UN World Commission on Environment and Development. Our common future (Brundtland report). 1987. <https://www.arena.ch/are/en/home/medien-und-publikationen/publikationen/nachhaltige-entwicklung/brundtland-report.html> (accessed June 2, 2025).
- Hanh TN. *The world we have: a Buddhist approach to peace and ecology*. Parallax Press, 2008.
- Singh A. *Planet, Plants & Animals: Ecological Paradigms in Buddhism*. Delhi: Primus Books, 2019.
- Jack JC, Gonet J, Mease A, Nowak K. Traditional knowledge underlies One Health. *Science* 2020; **369**: 1576.
- Redvers N, Poelina A, Schultz C, et al. Indigenous natural and first law in planetary health. *Challenges (Basel)* 2020; **11**: 29.
- Ikram S. *Creatures of the gods: animal mummies from ancient Egypt*. 2012. <https://repository.si.edu/items/826b96eb-1c7b-4e9f-a435-09dd90d6fc98> (accessed June 2, 2025).
- Crane S. Francis of Assisi on protecting, obeying, and worshiping with animals. *Exemplaria* 2021; **33**: 369–88.
- Ghobi S. Ethical rights of animals in Islam. *Relig Inq* 2020; **9**: 255–68.
- Regenstein L. Commandments of compassion: Jewish teachings on protecting animals and nature. The Humane Society of the United States, 2008.
- Omran OE, Essar MY, Alqodmani L, et al. The contribution of Islam to planetary health. *Lancet Planet Health* 2021; **5**: e333–34.

26 Jena NP. Gandhi's perspective on non-violence and animals: ethical theory and moral practice. *J Glob Ethics* 2017; **13**: 398–416.

27 Gottlieb RS. The Oxford handbook of religion and ecology. Oxford University Press, 2006.

28 Ratka R. Esoteric symbolism of the 'tree of life': a cross-cultural perspective. *J Hum Values* 2017; **23**: 73–80.

29 Giesecke A. The mythology of plants: botanical lore from Ancient Greece and Rome. Getty Publications, 2014.

30 Petrovska BB. Historical review of medicinal plants' usage. *Pharmacogn Rev* 2012; **6**: 1–5.

31 Kleisiaris CF, Sfakianakis C, Papathanasiou IV. Health care practices in ancient Greece: the Hippocratic ideal. *J Med Ethics Hist Med* 2014; **7**: 6.

32 Hippocrates. Hippocrates, volume 1. Harvard University Press, 2022.

33 Capua I, Cattoli G. One Health (r)evolution: learning from the past to build a new future. *Viruses* 2018; **10**: 725.

34 Badash I, Kleinman NP, Barr S, Jang J, Rahman S, Wu BW. Redefining health: the evolution of health ideas from antiquity to the era of value-based care. *Cureus* 2017; **9**: e1018.

35 Svalastog AL, Donev D, Jahren Kristoffersen N, Gajović S. Concepts and definitions of health and health-related values in the knowledge landscapes of the digital society. *Croat Med J* 2017; **58**: 431–35.

36 Evans BR, Leighton FA. A history of One Health. *Rev Sci Tech* 2014; **33**: 413–20.

37 Saunders LZ. Virchow's contributions to veterinary medicine: celebrated then, forgotten now. *Vet Pathol* 2000; **37**: 199–207.

38 Atlas RM. One Health: its origins and future. In: Mackenzie JS, Jeggo M, Daszak P, Richt JA, eds. One Health: the human-animal-environment interfaces in emerging infectious diseases: the concept and examples of a One Health approach. Berlin: Springer, 2013; 1–13.

39 Schultz MG. In memoriam: James Harlan Steele (1913–2013). *Emerg Infect Dis* 2014; **20**: 514–15.

40 Schwabe CW. Veterinary medicine and human health. Baltimore, MD: Williams & Wilkins, 1964.

41 Carson R. Silent Spring. Houghton Mifflin Harcourt, 2002.

42 Erdős L. The environmental movement is born – Rachel Carson and silent Spring. In: Erdős L, ed. Green heroes: from Buddha to Leonardo DiCaprio. Cham: Springer International Publishing, 2019: 151–54.

43 Maathai W. The green belt movement: sharing the approach and the experience. New York, NY: Lantern Books, 2003.

44 Weiss R. Africa's apes are imperiled, researchers warn. The Washington Post, April 7, 2003. <https://www.washingtonpost.com/archive/politics/2003/04/07/africas-apes-are-imperiled-researchers-warn/fc37f619-d7fe-407f-8f6e-b0d202eeb04a/> (accessed June 2, 2025).

45 Osofsky S, Karesh W, Kock R, Kock M. AHEAD invitees' briefing packet. 2023. <http://www.wcs-ahead.org/documents/aheadbriefingbooklet.pdf> (accessed May 19, 2025).

46 Cook RA, Karesh WB, Osofsky SA. The Manhattan principles on "one world, One Health". <https://oneworldonehealth.wcs.org/About-Us/Mission/The-Manhattan-Principles.aspx> (accessed June 2, 2025).

47 Zinsstag J, Schelling E, Wyss K, Mahamat MB. Potential of cooperation between human and animal health to strengthen health systems. *Lancet* 2005; **366**: 2142–45.

48 Woods A, Bresalier M, Cassidy A, Mason Dentinger R. Animals and the shaping of modern medicine: One Health and its histories. Cham: Palgrave Macmillan, 2018.

49 Gruetzmacher K, Karesh WB, Amuasi JH, et al. The Berlin principles on One Health – bridging global health and conservation. *Sci Total Environ* 2021; **764**: 142919.

50 Khan MS, Rothman-Ostrow P, Spencer J, et al. The growth and strategic functioning of One Health networks: a systematic analysis. *Lancet Planet Health* 2018; **2**: e264–73.

51 World Bank Group. People, pathogens and our planet: the economics of One Health. <https://openknowledge.worldbank.org/server/api/core/bitstreams/56229918-5f76-5ced-9b05-983f8907f06e/content> (accessed June 2, 2025).

52 Food and Agriculture Organization of the UN, World Organisation for Animal Health, WHO. The FAO-OIE-WHO collaboration: sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces. April, 2010. <https://www.oie.int/app/uploads/2021/03/final-concept-note-hanoi.pdf> (accessed May 19, 2025).

53 WHO. UN Environment Programme joins alliance to implement One Health approach. March 18, 2022. <https://www.who.int/news-room/18-03-2022-un-environment-programme-joins-alliance-to-implement-one-health-approach> (accessed June 2, 2025).

54 One Health High Level Expert Panel, One Health Initiative. One Health High-Level Expert Panel annual report 2021. March 31, 2022. https://cdn.who.int/media/docs/default-source/one-health/ohhlep/ohhlep-annual-report-2021.pdf?sfvrsn=f2d61e40_10&download=true (accessed June 2, 2025).

55 Harrison S, Kivuti-Bitok L, Macmillan A, Priest P. EcoHealth and One Health: theory-focused review in response to calls for convergence. *Environ Int* 2019; **132**: 105058.

56 Zinsstag J, Hediger K, Osman YM, et al. The promotion and development of One Health at Swiss TPH and its greater potential. *Diseases* 2022; **10**: 65.

57 Lapinski MK, Funk JA, Moccia LT. Recommendations for the role of social science research in One Health. *Soc Sci Med* 2015; **129**: 51–60.

58 Keune H, Flandroy L, Thys S, et al. The need for European OneHealth/EcoHealth networks. *Arch Public Health* 2017; **75**: 64.

59 Capon A. Understanding planetary health. *Lancet* 2020; **396**: 1325–26.

60 Garnier J, Savic S, Boriani E, Bagnol B, Häslar B, Kock R. Helping to heal nature and ourselves through human-rights-based and gender-responsive One Health. *One Health Outlook* 2020; **2**: 22–22.

61 The Lancet Planetary Health. Promoting planetary health through culture. *Lancet Planet Health* 2018; **2**: e509.

62 Sobrevila C. The role of Indigenous peoples in biodiversity conservation: the natural but often forgotten partners. May, 2008. <https://documents1.worldbank.org/curated/en/995271468177530126/pdf/443000WP0BOX321onservation01PUBLIC1.pdf> (accessed May 19, 2025).

63 Garnett ST, Burgess ND, Fa JE, et al. A spatial overview of the global importance of Indigenous lands for conservation. *Nat Sustain* 2018; **1**: 369–74.

64 Rockström J, Steffen W, Noone K, et al. Planetary boundaries: exploring the safe operating space for humanity. *Ecol Soc* 2009; **14**: 32.

65 Crutzen PJ. Geology of mankind. *Nature* 2002; **415**: 23–23.

66 Lerner H, Berg C. A comparison of three holistic approaches to health: One Health, EcoHealth, and planetary health. *Front Chem* 2017; **4**: 163.

67 Zinsstag J. Convergence of EcoHealth and One Health. *EcoHealth* 2012; **9**: 371–73.

68 LeGall F, Plante C, Berthe F, et al. Operational framework for strengthening human, animal and environmental public health systems at their interface. January, 2018. https://www.researchgate.net/publication/322989033_Operational_framework_for_strengthening_human_animal_and_environmental_public_health_systems_at_their_interface (accessed May 19, 2025).

69 Rüegg SR, Nielsen LR, Buttigieg SC, et al. A systems approach to evaluate One Health initiatives. *Front Vet Sci* 2018; **5**: 23.

70 Charron DF, ed. EcoHealth research in practice: innovative applications of an ecosystem approach to health. New York, NY: Springer-Verlag, 2012.

71 Whitemee S, Haines A, Beyer C, et al. Safeguarding human health in the Anthropocene epoch: report of The Rockefeller Foundation–Lancet Commission on planetary health. *Lancet* 2015; **386**: 1973–2028.

72 Adisasmto WB, Almuhairi S, Behravesh CB, et al. One Health: a new definition for a sustainable and healthy future. *PLoS Pathog* 2022; **18**: e1010537.

73 Wilcox BA, Aguirre AA, De Paula N, Siriaroonrat B, Echaubard P. Operationalizing One Health employing social-ecological systems theory: lessons from the Greater Mekong sub-region. *Front Public Health* 2019; **7**: 85.

74 Stember M. Advancing the social sciences through the interdisciplinary enterprise. *Soc Sci J* 1991; **28**: 1–14.

75 Klein JT. Discourses of transdisciplinarity: looking back to the future. *Futures* 2014; **63**: 68–74.

76 Zinsstag J, Schelling E, Waltner-Toews D, Tanner M. From “one medicine” to “One Health” and systemic approaches to health and well-being. *Prev Vet Med* 2011; **101**: 148–56.

77 Bennett NJ, Whitty TS, Finkbeiner E, et al. Environmental stewardship: a conceptual review and analytical framework. *Environ Manag* 2018; **61**: 597–614.

78 Craddock S, Hinchliffe S. Special issue: One World, One Health? Social science engagements with the One Medicine agenda. (Special Issue: One World, One Health? Social science engagements with the One Medicine agenda.). *Soc Sci Med* 2015; **129**: 1–130.

79 Briggs J, Sharp J. Indigenous knowledges and development: a postcolonial caution. *Third World Q* 2004; **25**: 661–76.

80 Destoumieux-Garzón D, Mavingui P, Boetsch G, et al. The One Health concept: 10 years old and a long road ahead. *Front Vet Sci* 2018; **5**: 14.

81 Sweet M, Burian A, Bulling M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. *J Invertebr Pathol* 2021; **186**: 107538.

82 Andrivon D, Montarry J, Fournet S. Plant health in a One Health world: missing links and hidden treasures. *Plant Pathol* 2021; **71**: 23–29.

83 Danielsen S. Including plant health in the ‘One Health’ concept - in theory and in Uganda. In: Olsen A, Ørnberg N, Winkel K, eds. A success story in Danish development aid - DBL (1964–2012). Gylling: Narayana Press, 2013: 107–13.

84 Humboldt-Dachroeden S, Rubin O, Sylvester Frid-Nielsen S. The state of One Health research across disciplines and sectors – a bibliometric analysis. *One Health* 2020; **10**: 100146.

85 Rizzo DM, Lichtveld M, Mazet JAK, Togami E, Miller SA. Plant health and its effects on food safety and security in a One Health framework: four case studies. *One Health Outlook* 2021; **3**: 6.

86 van Bruggen AHC, Goss EM, Havelaar A, van Diepeningen AD, Finckh MR, Morris JG Jr. One Health - Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. *Sci Total Environ* 2019; **664**: 927–37.

87 WHO. A health perspective on the role of the environment in One Health. June 29, 2022. <https://iris.who.int/bitstream/handle/10665/354574/WHO-EURO-2022-5290-45054-64214-eng.pdf?sequence=1> (accessed June 2, 2025).

88 Passarelli D, Denton F, Day A. Beyond opportunism: the UN Development System’s response to the triple planetary crisis. June 7, 2021. <https://cpr.unu.edu/research/projects/the-triple-planetary-crisis.html> (accessed June 2, 2025).

89 Liu J, Mooney H, Hull V, et al. Systems integration for global sustainability. *Science* 2015; **347**: 1258832.

90 Berkes F, Colding J, Folke C, eds. Navigating social-ecological systems: building resilience for complexity and change. Cambridge: Cambridge University Press, 2002.

91 Raskin I, Ribnicky DM, Komarnitsky S, et al. Plants and human health in the twenty-first century. *Trends Biotechnol* 2002; **20**: 522–31.

92 Fletcher J, Franz D, LeClerc JE. Healthy plants: necessary for a balanced “One Health” concept. *Vet Ital* 2009; **45**: 79–95.

93 Barak JD, Schroeder BK. Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants. *Annu Rev Phytopathol* 2012; **50**: 241–66.

94 WHO. Mycotoxins. Oct 2, 2023. <https://www.who.int/news-room/fact-sheets/detail/mycotoxins> (accessed May 19, 2025).

95 Brunn H, Arnold G, Körner W, Rippen G, Steinhäuser KG, Valentin I. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. *Environ Sci Eur* 2023; **35**: 20.

96 Panieri E, Baralic K, Djukic-Cosic D, Buha Djordjevic A, Saso L. PFAS molecules: a major concern for the human health and the environment. *Toxics* 2022; **10**: 44.

97 Lazar V, Ditu LM, Pircalabioru GG, et al. Aspects of gut microbiota and immune system interactions in infectious diseases, immunopathology, and cancer. *Front Immunol* 2018; **9**: 1830.

98 Blum WEH, Zechmeister-Boltenstern S, Keiblinger KM. Does soil contribute to the human gut microbiome? *Microorganisms* 2019; **7**: 287.

99 Tasnim N, Abulizi N, Pither J, Hart MM, Gibson DL. Linking the gut microbial ecosystem with the environment: does gut health depend on where we live? *Front Microbiol* 2017; **8**: 1935.

100 Brevik E, Slaughter L, Singh B, et al. Soil and human health: current status and future needs. *Air Soil Water Res* 2020; **13**: 1178622120934441.

101 Oliver MA, Gregory PJ. Soil, food security and human health: a review. *Eur J Soil Sci* 2015; **66**: 257–76.

102 CABI. How soil health is integral to One Health. CABI Blog, Nov 3, 2016. <https://blog.cabi.org/2016/11/03/how-soil-health-is-integral-to-one-health/> (accessed June 2, 2025).

103 Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India. *Environ Pollut* 2022; **306**: 119326.

104 Brevik EC, Sauer TJ. The past, present, and future of soils and human health studies. *Soil (Göttingen)* 2015; **1**: 35–46.

105 Gehlot P, Singh J, eds. Fungi and their role in sustainable development: current perspectives. Springer, 2018.

106 Lange L. The importance of fungi and mycology for addressing major global challenges. *IMA Fungus* 2014; **5**: 463–71.

107 FAO, IFAD, UNICEF, WFP, WHO. The state of food security in the world 2021: transforming food systems for food security, improved nutrition and affordable healthy diets for all. Food and Agricultural Organizations of the United Nations, 2021.

108 UNESCO World Water Assessment Programme. The United Nations world water development report 2019: leaving no one behind. 2019. <https://unesdoc.unesco.org/ark:/48223/pf0000367306> (accessed June 2, 2025).

109 WHO, UNICEF. State of the world’s hand hygiene. United Nations Children’s Fund, 2021.

110 Farley MG. How long does it take to get water? For Aysha, eight hours a day. UNICEF USA, March 1, 2018. <https://www.unicefusa.org/stories/how-long-does-it-take-get-water-aysha-eight-hours-day/30776> (accessed June 2, 2025).

111 UNICEF. Reimagining WASH: water security for all. 2021. <https://www.unicef.org/media/95241/file/water-security-for-all.pdf> (accessed June 2, 2025).

112 UNGA. United Nations Secretary-General’s plan: water action decade 2018–2028. 2016. https://wateractiondecade.org/wp-content/uploads/2018/03/UN-SG-Action-Plan_Water-Action-Decade-web.pdf (accessed May 19, 2025).

113 UNESCO World Water Assessment Programme. The United Nations world water development report 4: managing water under uncertainty and risk, executive summary. 2012. <https://unesdoc.unesco.org/ark:/48223/pf0000217175.locale=en> (accessed June 2, 2025).

114 Wilcox BA, Aguirre AA. One ocean, one health. *EcoHealth* 2004; **1**: 211–12.

115 International Union for Conservation of Nature. Issues brief. 2021. https://iucn.org/sites/default/files/2022-04/marine_plastic_pollution_issues_brief_nov21.pdf (accessed May 19, 2025).

116 Shinde P, Banerjee P, Mandhare A. Marine natural products as source of new drugs: a patent review (2015–2018). *Expert Opin Ther Pat* 2019; **29**: 283–309.

117 White MP, Alcock I, Wheeler BW, Depledge MH. Coastal proximity, health and well-being: results from a longitudinal panel survey. *Health Place* 2013; **23**: 97–103.

118 Ashbulby KJ, Pahl S, Webley P, White MP. The beach as a setting for families’ health promotion: a qualitative study with parents and children living in coastal regions in Southwest England. *Health Place* 2013; **23**: 138–47.

119 WHO. Billions of people still breathe unhealthy air: new WHO data. 2022. <https://www.who.int/news-room/04-04-2022-billions-of-people-still-breathe-unhealthy-air-new-who-data> (accessed June 2, 2025).

120 Cohen AJ, Brauer M, Burnett R, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. *Lancet* 2017; **389**: 1907–18.

121 Weber J, Tingey D, Andersen C. Plant response to air pollution. United States Environmental Protection Agency; 2002. https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=NHEERL&dirEntryId=50437 (accessed June 2, 2025).

122 Abelenda-Alonso G, Rombauts A, Burguillos N, Carratalà J. One air, one health: air pollution in the era of antimicrobial resistance. *Clin Microbiol Infect* 2021; **27**: 947–48.

123 WHO. Ambient (outdoor) air pollution. 2018. [https://www.who.int/news-room/fact-sheets/detail/ambient-\(outdoor\)-air-quality-and-health](https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health) (accessed June 2, 2025).

124 Hotchkiss JW, Reid SWJ, Christley RM. A survey of horse owners in Great Britain regarding horses in their care. Part 2: risk factors for recurrent airway obstruction. *Equine Vet J* 2007; **39**: 301–08.

125 Lin CH, Lo PY, Wu HD, Chang C, Wang LC. Association between indoor air pollution and respiratory disease in companion dogs and cats. *J Vet Intern Med* 2018; **32**: 1259–67.

126 Afifa, Arshad K, Hussain N, Ashraf MH, Saleem MZ. Air pollution and climate change as grand challenges to sustainability. *Sci Total Environ* 2024; **928**: 172370.

127 Rossati A. Global warming and its health impact. *Int J Occup Environ Med* 2017; **8**: 7–20.

128 WHO. COP24 special report: health and climate change. Dec 3, 2018. <https://iris.who.int/bitstream/handle/10665/276405/9789241514972-eng.pdf?sequence=1> (accessed June 2, 2025).

129 Romanello M, McGushin A, Di Napoli C, et al. The 2021 report of the *Lancet* Countdown on health and climate change: code red for a healthy future. *Lancet* 2021; **398**: 1619–62.

130 UN Climate Change. COP 21. <https://unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/cop-21> (accessed May 19, 2025).

131 Masood E, Tollefson J. 'COP26 hasn't solved the problem': scientists react to UN climate deal. *Nature*, Nov 14, 2021. <https://www.nature.com/articles/d41586-021-03431-4> (accessed June 2, 2025).

132 No authors listed. COP26 didn't solve everything—but researchers must stay engaged. *Nature* 2021; **599**: 347.

133 IPCC. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change. 2014. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf (accessed June 2, 2025).

134 IPCC. AR6 climate change 2022: impacts, adaptation and vulnerability. Working group II contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change. 2022. https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FullReport.pdf (accessed June 2, 2025).

135 Noyes PD, McElwee MK, Miller HD, et al. The toxicology of climate change: environmental contaminants in a warming world. *Environ Int* 2009; **35**: 971–86.

136 Confalonieri UE, Menezes JA, de Souza CM. Climate change and adaptation of the health sector: the case of infectious diseases. *Virulence* 2015; **6**: 554–57.

137 Franchini M, Mannucci PM. Impact on human health of climate changes. *Eur J Intern Med* 2015; **26**: 1–5.

138 McMichael AJ. Extreme weather events and infectious disease outbreaks. *Virulence* 2015; **6**: 543–47.

139 Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate change and respiratory infections. *Ann Am Thorac Soc* 2016; **13**: 1223–30.

140 Pozio E. How globalization and climate change could affect foodborne parasites. *Exp Parasitol* 2020; **208**: 107807.

141 Bezirtzoglou C, Dekas K, Charvalos E. Climate changes, environment and infection: facts, scenarios and growing awareness from the public health community within Europe. *Anaerobe* 2011; **17**: 337–40.

142 Bullone M, Murcia RY, Lavoie JP. Environmental heat and airborne pollen concentration are associated with increased asthma severity in horses. *Equine Vet J* 2016; **48**: 479–84.

143 Deng SZ, Jalaludin BB, Antó JM, Hess JJ, Huang CR. Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals. *Chin Med J (Engl)* 2020; **133**: 1552–60.

144 Glaser J, Lemery J, Rajagopalan B, et al. Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. *Clin J Am Soc Nephrol* 2016; **11**: 1472–83.

145 Johnson RJ, Sánchez-Lozada LG, Newman LS, et al. Climate change and the kidney. *Ann Nutr Metab* 2019; **74** (suppl 3): 38–44.

146 Burnham JP. Climate change and antibiotic resistance: a deadly combination. *Ther Adv Infect Dis* 2021; **8**: 204993612199137.

147 Ali MZ, Carlile G, Giasuddin M. Impact of global climate change on livestock health: Bangladesh perspective. *Open Vet J* 2020; **10**: 178–88.

148 Zinsstag J, Crump L, Schelling E, et al. Climate change and One Health. *FEMS Microbiol Lett* 2018; **365**: fny085.

149 Herrero M, Addison J, Bedelian C, et al. Climate change and pastoralism: impacts, consequences and adaptation. *Rev Sci Tech* 2016; **35**: 417–33.

150 da Silva CRB, Beaman JE, Dorey JB, et al. Climate change and invasive species: a physiological performance comparison of invasive and endemic bees in Fiji. *J Exp Biol* 2021; **224**: jeb.230326.

151 Ravindranath NH, Sathaye JA. Climate change and developing countries. In: Ravindranath NH, Sathaye JA, eds. Climate change and developing countries. Dordrecht: Springer, 2002: 247–65.

152 Wang LF, Walker PJ, Poon LLM. Mass extinctions, biodiversity and mitochondrial function: are bats 'special' as reservoirs for emerging viruses? *Curr Opin Virol* 2011; **1**: 649–57.

153 Ramírez-Francé LA, García-Herrera LV, Losada-Prado S, et al. Bats and their vital ecosystem services: a global review. *Integr Zool* 2022; **17**: 2–23.

154 UN Environment Programme, Convention on Biological Diversity, WHO. Connecting global priorities: biodiversity and human health. 2015. <https://www.cbd.int/health/SOK-biodiversity-en.pdf> (accessed May 19, 2025).

155 Keesing F, Belden LK, Daszak P, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. *Nature* 2010; **468**: 647–52.

156 IPBES. Workshop report on biodiversity and pandemics of the intergovernmental platform on biodiversity and ecosystem service. October, 2020. <https://zenodo.org/records/4147317> (accessed June 2, 2025).

157 Pongsiri MJ, Roman J, Ezenwa VO, et al. Biodiversity loss affects global disease ecology. *Bioscience* 2009; **59**: 945–54.

158 IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. May 4, 2019. <https://zenodo.org/records/6417333> (accessed June 2, 2025).

159 Ritchie H, Roser M. Half of the world's habitable land is used for agriculture. Feb 16, 2024. <https://ourworldindata.org/global-land-for-agriculture> (accessed June 2, 2025).

160 Daszak P, Amuasi J, das Neves CG, et al. IPBES workshop on biodiversity and pandemics of the intergovernmental platform on biodiversity and ecosystem services. 2020. https://files.ipbes.net/ipes-web-prod-public-files/2020-12/IPBES%20Workshop%20on%20Biodiversity%20and%20Pandemics%20Report_0.pdf (accessed May 19, 2025).

161 Hassell JM, Bettridge JM, Ward MJ, et al. Socio-ecological drivers of vertebrate biodiversity and human-animal interfaces across an urban landscape. *Glob Change Biol* 2021; **27**: 781–92.

162 Hassell JM, Muloi DM, VanderWaal KL, et al. Epidemiological connectivity between humans and animals across an urban landscape. *Proc Natl Acad Sci USA* 2023; **120**: e2218860120.

163 Thacker SB, Birkhead GS. Surveillance. In: Field epidemiology, 3rd edn. Oxford: Oxford University Press, 2008.

164 George J, Häslер B, Mremi I, et al. A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats. *One Health Outlook* 2020; **2**: 11.

165 WHO. International health regulations (2005), 2nd edn. 2008. <https://iris.who.int/bitstream/handle/10665/43883/9789241580410-eng.pdf?sequence=1> (accessed June 2, 2025).

166 World Organisation for Animal Health. OIE-WAHIS: a new era for animal health data. 2021. <https://www.woah.org/en/oie-wahis-a-new-era-for-animal-health-data/> (accessed June 2, 2025).

167 World Organisation for Animal Health. World Animal Health Information System. 2020. <https://wahis.woah.org/#/home> (accessed June 2, 2025).

168 WHO. Technical guidelines for integrated disease surveillance and response in the African region: third edition. 2019. <https://iris.who.int/bitstream/handle/10665/325015/WHO-AF-WHE-CPI-05.2019-eng.pdf?sequence=1> (accessed June 2, 2025).

169 Fall IS, Rajatonirina S, Yahaya AA, et al. Integrated Disease Surveillance and Response (IDSR) strategy: current status, challenges and perspectives for the future in Africa. *BMJ Glob Health* 2019; **4**: e001427.

170 Wolfe CM, Hamblin EL, Dzotsi EK, et al. Systematic review of Integrated Disease Surveillance and Response (IDSR) implementation in the African region. *PLoS One* 2021; **16**: e0245457.

171 Stärk KDC, Arroyo Kuribreña M, Dauphin G, et al. One Health surveillance – more than a buzz word? *Prev Vet Med* 2015; **120**: 124–30.

172 Aenishaenslin C, Martins SB, Stärk KDC. Surveillance and response conducted in a One Health context. In: Zinsstag J, Schelling E, Crump L, et al, eds. One Health: the theory and practice of integrated health approaches. CABI, 2020: 102–17.

173 Archer BN, Abdelmalik P, Cognat S, et al. Defining collaborative surveillance to improve decision making for public health emergencies and beyond. *Lancet* 2023; **401**: 1831–34.

174 FAO, UNEP, WHO, WOAH. One Health Joint Plan of Action (2022–2026): working together for the health of humans, animals, plants and the environment. 2022. <https://openknowledge.fao.org/server/api/core/bitstreams/fc522db2-9619-4f70-b6ba-64177f4865e6/content> (accessed June 2, 2025).

175 WHO. Ending the neglect to attain the Sustainable Development Goals: a road map for neglected tropical diseases 2021 - 2030. 2020. <https://www.who.int/publications/i/item/9789240010352> (accessed May 19, 2025).

176 FAO, UNEP, WHO, WOAH. Quadripartite One Health intelligence scoping study: actions to develop an effective global One Health intelligence system. 2022. <https://rr-africa.woah.org/wp-content/uploads/2022/08/cc1533en.pdf> (accessed May 19, 2025).

177 Welburn SC, Beange I, Ducrototy MJ, Okello AL. The neglected zoonoses - the case for integrated control and advocacy. *Clin Microbiol Infect* 2015; **21**: 433–43.

178 Singh S, Sharma P, Pal N, Sarma DK, Tiwari R, Kumar M. Holistic One Health surveillance framework: synergizing environmental, animal, and human determinants for enhanced infectious disease management. *ACS Infect Dis* 2024; **10**: 808–26.

179 Hulme PE. One biosecurity: a unified concept to integrate human, animal, plant, and environmental health. *Emerg Top Life Sci* 2020; **4**: 539–49.

180 Hoffman JM, Creevy KE, Franks A, O'Neill DG, Promislow DEL. The companion dog as a model for human aging and mortality. *Aging Cell* 2018; **17**: e12737.

181 Keusch GT, Amuasi JH, Anderson DE, et al. Pandemic origins and a One Health approach to preparedness and prevention: solutions based on SARS-CoV-2 and other RNA viruses. *Proc Natl Acad Sci USA* 2022; **119**: e2202871119.

182 Machalaba C, Daszak P, Karesh W, Romanelli C. Brief for GSDR 2015 - anthropogenic drivers of emerging infectious diseases. 2015. <https://sdgs.un.org/sites/default/files/documents/631980-Machalaba-Anthropogenic%2520Drivers%2520of%2520Emerging%2520Infectious%2520Diseases.pdf> (accessed June 2, 2025).

183 Baker RE, Mahmud AS, Miller IF, et al. Infectious disease in an era of global change. *Nat Rev Microbiol* 2022; **20**: 193–205.

184 Morse SS, Mazet JA, Woolhouse M, et al. Prediction and prevention of the next pandemic zoonosis. *Lancet* 2012; **380**: 1956–65.

185 Olson SH, Fine AE, Pruvot M, Keatts LO, Walzer C. Ground zero for pandemic prevention: reinforcing environmental sector integration. *BMJ Glob Health* 2023; **8**: e013600.

186 Bordier M, Uea-Anuwong T, Binot A, Hendrikx P, Goutard FL. Characteristics of One Health surveillance systems: a systematic literature review. *Prev Vet Med* 2020; **181**: 104560.

187 Bennani H, Cornelisen L, Stärk KDC, Häslér B. Characterisation and mapping of the surveillance system for antimicrobial resistance and antimicrobial use in the United Kingdom. *Vet Rec* 2021; **188**: e10.

188 Aenishaenslin C, Häslér B, Ravel A, Parmley J, Stärk K, Buckeridge D. Evidence needed for antimicrobial resistance surveillance systems. *Bull World Health Organ* 2019; **97**: 283–89.

189 Mor S, Wiethoelter A, Massey P, Eastwood K. One Health surveillance: monitoring health risks at the human-animal-environment interface. In: Walton M, ed. One planet, One Health. Sydney University Press, 2019: 179–218.

190 WHO. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. 2020. <https://iris.who.int/bitstream/handle/10665/331452/9789240002319-eng.pdf?sequence=1> (accessed June 2, 2025).

191 Martini M, Fenati M, Agosti M, et al. A surveillance system for diseases of companion animals in the Veneto region (Italy). *Rev Sci Tech* 2017; **36**: 1007–14.

192 Baioni E, Scanziani E, Vincenti MC, et al. Estimating canine cancer incidence: findings from a population-based tumour registry in northwestern Italy. *BMC Vet Res* 2017; **13**: 203.

193 Royal Veterinary College. University of London. VetCompass. 2021. <https://www.rvc.ac.uk/vetcompass> (accessed June 2, 2025).

194 Yusoff FM, Abdullah AF, Aris AZ, Umi WAD. Impacts of COVID-19 on the aquatic environment and implications on aquatic food production. *Sustainability* 2021; **13**: 11281.

195 Ladeira C, Frazzoli C, Orisakwe OE. Engaging One Health for non-communicable diseases in Africa: perspective for mycotoxins. *Front Public Health* 2017; **5**: 266.

196 Granados-Chinchilla F, Molina A, Chavarría G, Alfaro-Cascante M, Bogantes-Ledezma D, Murillo-Williams A. Aflatoxins occurrence through the food chain in Costa Rica: applying the One Health approach to mycotoxin surveillance. *Food Control* 2017; **82**: 217–26.

197 Parnell S, van den Bosch F, Gottwald T, Gilligan CA. Surveillance to inform control of emerging plant diseases: an epidemiological perspective. *Annu Rev Phytopathol* 2017; **55**: 591–610.

198 Aktar W, Sengupta D, Chowdhury A. Impact of pesticides use in agriculture: their benefits and hazards. *Interdiscip Toxicol* 2009; **2**: 1–12.

199 Gunstone T, Cornelisse T, Klein K, Dubey A, Donley N. Pesticides and soil invertebrates: a hazard assessment. *Front Environ Sci* 2021; **9**: 643847.

200 Kim J, Yoon S, Park Y, Kim S, Ryu C. Crossing the kingdom border: human diseases caused by plant pathogens. *Environ Microbiol* 2020; **22**: 2485–95.

201 Balleju F, Lecoq H, Raoult D, Colson P. Can plant viruses cross the kingdom border and be pathogenic to humans? *Viruses* 2015; **7**: 2074–98.

202 Miedaner T, Garbelotto MM. Human-mediated migration of plants, their pathogens and parasites. *J Plant Pathol* 2024; **106**: 301–25.

203 Xiao K, Zhang L. Wastewater pathogen surveillance based on One Health approach. *Lancet Microbe* 2023; **4**: e297.

204 Hill R, Stentiford GD, Walker DI, et al. Realising a global One Health disease surveillance approach: insights from wastewater and beyond. *Nat Commun* 2024; **15**: 5324.

205 Kisling LA, Das MJ. Prevention strategies. 2022. <http://www.ncbi.nlm.nih.gov/books/NBK537222/> (accessed June 2, 2025).

206 Vinuales J, Moon S, Moli GL, Burci GL. A global pandemic treaty should aim for deep prevention. *Lancet* 2021; **397**: 1791–92.

207 Authored by the members of the One Health High-Level Expert Panel (OHHLEP), Markotter W, Mettenleiter TC, et al. Prevention of zoonotic spillover: from relying on response to reducing the risk at source. *PLoS Pathog* 2023; **19**: e1011504.

208 Aenishaenslin C, Häslér B, Ravel A, et al. Evaluating the integration of One Health in surveillance systems for antimicrobial use and resistance: a conceptual framework. *Front Vet Sci* 2021; **8**: 611931.

209 Bennani H, Cornelisen L, Stärk KDC, Häslér B. Evaluating integrated surveillance for antimicrobial use and resistance in England: a qualitative study. *Front Vet Sci* 2021; **8**: 743857.

210 Grajeda LM, McCracken JP, Berger-González M, et al. Sensitivity and representativeness of One-Health surveillance for diseases of zoonotic potential at health facilities relative to household visits in rural Guatemala. *One Health* 2021; **13**: 100336.

211 Woodruff RE, Guest CS, Garner MG, Becker N, Lindsay M. Early warning of Ross River virus epidemics: combining surveillance data on climate and mosquitoes. *Epidemiology* 2006; **17**: 569–75.

212 Leandro AS, Lopes RD, Martins CA, et al. The adoption of the One Health approach to improve surveillance of venomous animal injury, vector-borne and zoonotic diseases in Foz do Iguaçu, Brazil. *PLoS Negl Trop Dis* 2021; **15**: e0009109.

213 Zinsstag J, Utzinger J, Probst-Hensch N, Shan L, Zhou XN. Towards integrated surveillance-response systems for the prevention of future pandemics. *Infect Dis Poverty* 2020; **9**: 140.

214 Karesh WB, Dobson A, Lloyd-Smith JO, et al. Ecology of zoonoses: natural and unnatural histories. *Lancet* 2012; **380**: 1936–45.

215 Wolfe ND, Dunavant CP, Diamond J. Origins of major human infectious diseases. *Nature* 2007; **447**: 279–83.

216 Messenger AM, Barnes AN, Gray GC. Reverse zoonotic disease transmission (zooanthroposisis): a systematic review of seldom-documented human biological threats to animals. *PLoS One* 2014; **9**: e89055.

217 National Research Council (US) Committee on Achieving Sustainable Global Capacity for Surveillance and Response to Emerging Diseases of Zoonotic Origin. Making the case for zoonotic disease surveillance. In: Keusch GT, Pappaoianou M, Gonzalez MC, eds. Sustaining global surveillance and response to emerging zoonotic diseases. National Academies Press (US); 2009, pp 27–76.

218 Costa EA, Bayeux JJM, Silva ASG, et al. Epidemiological surveillance of West Nile virus in the world and Brazil: relevance of equine surveillance in the context of “One Health”. *Braz J Vet Res Anim Sci* 2019; **56**: e164335–164335.

219 Dente MG, Riccardo F, Bolici F, et al. Implementation of the One Health approach to fight arbovirus infections in the Mediterranean and Black Sea Region: assessing integrated surveillance in Serbia, Tunisia and Georgia. *Zoonoses Public Health* 2019; **66**: 276–87.

220 Radaelli MC, Verna F, Pautasso A, et al. “One Health” approach in West Nile disease surveillance: the northwestern Italian experience. *Int J Infect Dis* 2019; **79**: 138.

221 PREDICT Consortium. One Health in Action. October, 2016. https://www.ecohealthalliance.org/wp-content/uploads/2016/10/One-Health-in-Action-Case-Study-Booklet_24-October-2016.pdf (accessed June 2, 2025).

222 Almeida MAB, Cardoso JC, dos Santos E, et al. Surveillance for yellow fever virus in non-human primates in southern Brazil, 2001–2011: a tool for prioritizing human populations for vaccination. *PLoS Negl Trop Dis* 2014; **8**: e2741.

223 Paternoster G, Babo Martins S, Mattivi A, et al. Economics of One Health: costs and benefits of integrated West Nile virus surveillance in Emilia-Romagna. *PLoS One* 2017; **12**: e0188156.

224 Martins S, Rushton J, Stärk KDC. Economics of zoonoses surveillance in a “One Health” context: an assessment of *Campylobacter* surveillance in Switzerland. *Epidemiol Infect* 2017; **145**: 1148–58.

225 Lam S, Hoffmann V, Bett B, et al. Navigating One Health in research-for-development: reflections on the design and implementation of the CGIAR Initiative on One Health. *One Health* 2024; **18**: 100710.

226 WHO. One Health. <https://www.who.int/news-room/fact-sheets/detail/one-health> (accessed June 2, 2025).

227 Hayman DTS, Adisasmto WB, Almuahiri S, et al. Developing One Health surveillance systems. *One Health* 2023; **17**: 100617.

228 dos S Ribeiro C, van de Burgwal LHM, Reeger BJ. Overcoming challenges for designing and implementing the One Health approach: a systematic review of the literature. *One Health* 2019; **7**: 100085.

229 Delesalle L, Sadoine ML, Mediouni S, et al. How are large-scale One Health initiatives targeting infectious diseases and antimicrobial resistance evaluated? A scoping review. *One Health* 2022; **14**: 100380.

230 Kelly TR, Karesh WB, Johnson CK, et al. One Health proof of concept: bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. *Prev Vet Med* 2017; **137**: 112–18.

231 Uchtmann N, Herrmann JA, Hahn EC 3rd, Beasley VR. Barriers to, efforts in, and optimization of integrated One Health surveillance: a review and synthesis. *EcoHealth* 2015; **12**: 368–84.

232 Berezowski J, Akkina JE, Del Rio Vilas VJ, et al. One Health Surveillance: perceived benefits and workforce motivations. *Rev Sci Tech* 2019; **38**: 251–60.

233 Nerpel A, Yang L, Sorger J, Käsbohrer A, Walzer C, Desvars-Larrive A. SARS-ANI: a global open access dataset of reported SARS-CoV-2 events in animals. *Sci Data* 2022; **9**: 438.

234 Nerpel A, Käsbohrer A, Walzer C, Desvars-Larrive A. Data on SARS-CoV-2 events in animals: mind the gap! *One Health* 2023; **17**: 100653.

235 Falzon LC, Alumasa L, Amany A, et al. One Health in action: operational aspects of an integrated surveillance system for zoonoses in western Kenya. *Front Vet Sci* 2019; **6**: 252.

236 Filter M, Buschhardt T, Dórea F, et al. One Health Surveillance Codex: promoting the adoption of One Health solutions within and across European countries. *One Health* 2021; **12**: 100233.

237 Surveillance and information sharing operational tool: an operational tool of the tripartite zoonoses guide. <https://iris.who.int/bitstream/handle/10665/361443/9789240053250-eng.pdf?sequence=1> (accessed June 2, 2025).

238 WHO. WHO, Germany open Hub for Pandemic and Epidemic Intelligence in Berlin. WHO News, 2021. <https://www.who.int/news-room/01-09-2021-who-germany-open-hub-for-pandemic-and-epidemic-intelligence-in-berlin> (accessed June 2, 2025).

239 Quadripartite One Health intelligence scoping study. <https://openknowledge.fao.org/server/api/core/bitstreams/ec95f45e-6d9d-46fe-b988-a5ea4cc6e996/content> (accessed June 2, 2025).

240 Eisenstein M. Putting low-cost diagnostics to the test. *Nature* 2023; published online Nov 27. <https://doi.org/10.1038/d41586-023-03576-4>.

241 Tsao SF, Chen H, Tisseverasinghe T, Yang Y, Li L, Butt ZA. What social media told us in the time of COVID-19: a scoping review. *Lancet Digit Health* 2021; **3**: e175–94.

242 Yousefianghani S, Dara R, Poljak Z, Bernardo TM, Sharif S. The assessment of Twitter’s potential for outbreak detection: avian influenza case study. *Sci Rep* 2019; **9**: 18147.

243 Charles-Smith LE, Reynolds TL, Cameron MA, et al. Using social media for actionable disease surveillance and outbreak management: a systematic literature review. *PLoS One* 2015; **10**: e0139701.

244 Asokan GV, Asokan V. Leveraging “big data” to enhance the effectiveness of “One Health” in an era of health informatics. *J Epidemiol Glob Health* 2015; **5**: 311–14.

245 Velasco E, Agheneza T, Denecke K, Kirchner G, Eckmanns T. Social media and internet-based data in global systems for public health surveillance: a systematic review. *Milbank Q* 2014; **92**: 7–33.

246 Nsubuga P, White ME, Thacker SB, et al. Public health surveillance: a tool for targeting and monitoring interventions. In: Jamison DT, Breman JG, Measham AR, et al, eds. Disease control priorities in developing countries, 2nd edn. Washington, DC: World Bank, 2006, 997–1015.

247 Karimuribo ED, Mutagahya E, Sindato C, et al. A smartphone app (Afyadata) for innovative one health disease surveillance from community to national levels in Africa: intervention in disease surveillance. *JMIR Public Health Surveill* 2017; **3**: e94.

248 Ending Pandemics. Community-based disease outbreak detection and response in eastern and southern Africa (DODRES). 2021. <https://endingpandemics.org/projects/community-based-disease-outbreak-detection-and-response-in-eastern-and-southern-africa/> (accessed June 2, 2025).

249 Peyre M, Vourc'h G, Lefrançois T, Martin-Prevel Y, Soussana JF, Roche B. PREFZODE: preventing zoonotic disease emergence. *Lancet* 2021; **397**: 792–93.

250 Iftekhar EN, Priesemann V, Balling R, et al. A look into the future of the COVID-19 pandemic in Europe: an expert consultation. *Lancet Reg Health Eur* 2021; **8**: 100185.

251 Koren C, Swanson D, Gröneng GM, et al. Sykdomspulsen One Health - a real time surveillance system in an infrastructure coping with half a million analysis a day. May 28, 2021. <https://aca.pensoft.net/article/68891/> (accessed May 18, 2025).

252 Nguyen-Viet H, Grace D, McDermott J. Integrated approaches to tackling health issues-related to agri-food systems. *Int J Public Health* 2019; **64**: 5–6.

253 Grace D. Risk based prioritisation of food hazards. Nov 19, 2020. <https://cgospace.cgiar.org/server/api/core/bitstreams/9317580c-7536-4f88-8689-a0175536b92e/content> (accessed May 19, 2025).

254 Béné C, Prager SD, Achicanoy HAE, et al. Global map and indicators of food system sustainability. *Sci Data* 2019; **6**: 279.

255 van Wassenaer L, Verdouw C, Wolfert S. What blockchain are we talking about? An analytical framework for understanding blockchain applications in agriculture and food. *Front Blockchain* 2021; **4**: 20.

256 Chattu VK, Nanda A, Chattu SK, Kadri SM, Knight AW. The emerging role of blockchain technology applications in routine disease surveillance systems to strengthen global health security. *Big Data Cogn Comput* 2019; **3**: 25.

257 Tarallo E, Akabane GK, Shimabukuro CI, Mello J, Amancio D. Machine learning in predicting demand for fast-moving consumer goods: an exploratory research. *IFAC-PapersOnLine* 2019; **52**: 737–42.

258 Jesse M, Jannach D, Gula B. Digital nudging for online food choices. *Front Psychol* 2021; **12**: 729589.

259 CDC. Next Generation Technology. PulseNet. 2020. https://www.cdc.gov/pulsenet/hcp/about/next-gen-wgs.html?CDC_AAref_Val=https://www.cdc.gov/pulsenet/next-gen-wgs.html (accessed June 2, 2025).

260 Duan J, Zhang C, Gong Y, Brown S, Li Z. A content-analysis based literature review in blockchain adoption within food supply chain. *Int J Environ Res Public Health* 2020; **17**: 1784.

261 Barge P, Gay P, Merlini V, Tortia C. Radio frequency identification technologies for livestock management and meat supply chain traceability. *Can J Anim Sci* 2013; **93**: 23–33.

262 UNSCN. UNSCN nutrition 45 – nutrition in a digital world. 2020. <https://aims.fao.org/news/call-contributions-unsrn-nutrition-45-%E2%80%99-nutrition-digital-world> (accessed June 2, 2025).

263 Zinsstag J, Kaiser-Grolimund A, Heitz-Tokpa K, et al. Advancing One human–animal–environment Health for global health security: what does the evidence say? *Lancet* 2023; **401**: 591–604.

264 Woolhouse MEJ, Dye C, Taylor LH, Latham SM. Risk factors for human disease emergence. *Philos Trans R Soc Lond B Biol Sci* 2001; **356**: 983–89.

265 Otte J, Pica-Ciamarra U. Emerging infectious zoonotic diseases: the neglected role of food animals. *One Health* 2021; **13**: 100323.

266 Cleaveland S, Laurenson MK, Taylor LH. Diseases of humans and their domestic mammals: pathogen characteristics, host range and the risk of emergence. *Philos Trans R Soc Lond B Biol Sci* 2001; **356**: 991–99.

267 Wardeh M, Blagrove MSC, Sharkey KJ, Baylis M. Divide-and-conquer: machine-learning integrates mammalian and viral traits with network features to predict virus-mammal associations. *Nat Commun* 2021; **12**: 3954.

268 Kozlov M. Monkeypox in Africa: the science the world ignored. *Nature* 2022; **607**: 17–18.

269 Heymann DL, Szczepaniowski M, Esteves K. Re-emergence of monkeypox in Africa: a review of the past six years. *Br Med Bull* 1998; **54**: 693–702.

270 Meisner J, McLeland-Wieser H, Traylor EE, et al. Relational One Health: a more-than-biomedical framework for more-than-human health, and lessons learned from Brazil, Ethiopia, and Israel. *One Health* 2024; **18**: 100676.

271 Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected diseases: a deficient market and a public-health policy failure. *Lancet* 2002; **359**: 2188–94.

272 WHO. Ending the neglect to attain the Sustainable Development Goals. 2022. <https://iris.who.int/bitstream/handle/1065/351193/9789240042414-eng.pdf?sequence=1&isAllowed=y> (accessed June 2, 2025).

273 Morse SS. Factors in the emergence of infectious diseases. *Emerg Infect Dis* 1995; **1**: 7–15.

274 Yale G, Bhanurekha V, Ganeshan PI. Anthropogenic factors responsible for emerging and re-emerging infectious diseases. *Curr Sci* 2013; **105**: 940–46.

275 Horby PW, Hoa NT, Pfeiffer DU, Wertheim HFL. Drivers of emerging zoonotic infectious diseases. In: Yamada A, Kahn LH, Kaplan B, Monath TP, Woodall J, Conti L, eds. *Confronting emerging zoonoses: the One Health paradigm*. Springer Nature, 2014: 13–26.

276 Savassi BAES, Mouahid G, Lasica C, et al. Cattle as natural host for *Schistosoma haematobium* (Bilharz, 1852) Weinland, 1858 x *Schistosoma bovis* Sonsino, 1876 interactions, with new cercarial emergence and genetic patterns. *Parasitol Res* 2020; **119**: 2189–205.

277 Webster BL, Diaw OT, Seye MM, Webster JP, Rollinson D. Introgressive hybridization of *Schistosoma haematobium* group species in Senegal: species barrier break down between ruminant and human schistosomes. *PLoS Negl Trop Dis* 2013; **7**: e2110.

278 Peng W, Criscione CD. Ascariasis in people and pigs: new inferences from DNA analysis of worm populations. *Infect Genet Evol* 2012; **12**: 227–35.

279 Boyce MR, Carlin EP, Schermerhorn J, Standley CJ. A One Health approach for Guinea worm disease control: scope and opportunities. *Trop Med Infect Dis* 2020; **5**: 159.

280 Wu Z, Han Y, Wang Y, et al. A comprehensive survey of bat sarbecoviruses across China in relation to the origins of SARS-CoV and SARS-CoV-2. *Natl Sci Rev* 2023; **10**: nwac213.

281 Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. *Nature* 2022; **604**: 330–36.

282 Sparre MN, Hodges NF, Sherman T, VandeWoude S, Bosco-Lauth AM, Mayo CE. Role of spillover and spillback in SARS-CoV-2 transmission and the importance of One Health in understanding the dynamics of the COVID-19 pandemic. *J Clin Microbiol* 2023; **61**: e01610–22.

283 Banerjee A, Mossman K, Baker ML. Zoonanthroponotic potential of SARS-CoV-2 and implications of reintroduction into human populations. *Cell Host Microbe* 2021; **29**: 160–64.

284 Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. *Science* 2021; **371**: 172–77.

285 Wertheim JO, Hostager R, Ryu D, et al. Discovery of novel herpes simplexviruses in wild gorillas, bonobos, and chimpanzees supports zoonotic origin of HSV-2. *Mol Biol Evol* 2021; **38**: 2818–30.

286 Díaz A, Lequime S, Patrono LV, et al. Measles virus and rinderpest virus divergence dated to the rise of large cities. *Science* 2020; **368**: 1367–70.

287 Espinosa R, Tago D, Treich N. Infectious diseases and meat production. *Environ Resour Econ* 2020; **76**: 1019–44.

288 WHO Regional Office for South-East Asia. A brief guide to emerging infectious diseases and zoonoses. 2014. <https://iris.who.int/bitstream/handle/1065/204722/B5123.pdf?sequence=1&isAllowed=y> (accessed June 2, 2025).

289 Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. *Trends Ecol Evol* 2004; **19**: 535–44.

290 Bradbear N. Bees and their role in forest livelihoods. 2009. <https://www.fao.org/4/10842e/10842e00.pdf> (accessed May 19, 2025).

291 Alves RRN. The ethnozoological role of working animals in traction and transport. In: Alves RRN, Albuquerque UP, eds. *Ethnozoology: animals in our lives*, 1st ed. 2017, 339–48.

292 van Huis A. Insects as human food. In: Alves RRN, Albuquerque UP, eds. *Ethnozoology: animals in our lives*, 1st ed. 2017, 195–214.

293 Laing R, Swan P. Wool in human health and well-being. In: Fangueiro R, Rana S, eds. *Natural fibres: advances in science and technology towards industrial applications*. Springer Netherlands, 2016, 19–34.

294 Evans JD, Schwarz RS. Bees brought to their knees: microbes affecting honey bee health. *Trends Microbiol* 2011; **19**: 614–20.

295 Barratt AS, Rich KM, Eze JI, Porphyre T, Gunn GJ, Stott AW. Framework for estimating indirect costs in animal health using time series analysis. *Front Vet Sci* 2019; **6**: 190.

296 International Federation for Animal Health (IFAH). The cost of animal diseases and societal benefits from healthy animals. 2012. https://www.bft-online.de/fileadmin/bft/publikationen/IFAH_Annual_Report_2012.pdf (accessed May 19, 2025).

297 Riviere-Cinnamond A. Funding animal healthcare systems: mechanisms and options. 2004. https://assets.publishing.service.gov.uk/media/57a08ca9e5274a31e0001358/PPPLexecsumm_wp17.pdf (accessed May 19, 2025).

298 Borgerson C, Johnson SE, Louis EE, et al. The use of natural resources to improve household income, health, and nutrition within the forests of Kianjavato, Madagascar. *Madag Conserv Dev* 2018; **13**: 45–52.

299 Clemmons EA, Alfson KJ, Dutton JW 3rd. Transboundary animal diseases, an overview of 17 diseases with potential for global spread and serious consequences. *Animals (Basel)* 2021; **11**: 2039.

300 Prempeh H, Smith R, Müller B. Foot and mouth disease: the human consequences. *BMJ* 2001; **322**: 565–66.

301 Mahmoud MA, Galbat SA. Outbreak of foot and mouth disease and peste des petits ruminants in sheep flock imported for immediate slaughter in Riyadh. *Vet World* 2017; **10**: 238–43.

302 World Organisation for Animal Health. OIE technical disease card: foot and mouth disease. 2021. <https://www.woah.org/app/uploads/2021/09/202501-fmd-diseasercard.pdf> (accessed June 2, 2025).

303 Tadesse B, Tesfahun A, Molla W, Demisse E, Jemberu WT. Foot and mouth disease outbreak investigation and estimation of its economic impact in selected districts in northwest Ethiopia. *Vet Med Sci* 2020; **6**: 122–32.

304 Knight-Jones TJD, Rushton J. The economic impacts of foot and mouth disease – what are they, how big are they and where do they occur? *Prev Vet Med* 2013; **112**: 161–73.

305 Smith KM, Machalaba CC, Seifman R, Feferholtz Y, Karesh WB. Infectious diseases and economics: the case for considering multi-sectoral impacts. *One Health* 2019; **7**: 100080.

306 Lederman Z, Magalhães-Sant'Ana M, Voo TC. Stamping out animal culling: from anthropocentrism to One Health ethics. *J Agric Environ Ethics* 2021; **34**: 27.

307 Miguel E, Grosbois V, Caron A, Pople D, Roche B, Donnelly CA. A systemic approach to assess the potential and risks of wildlife culling for infectious disease control. *Commun Biol* 2020; **3**: 1–14.

308 Morens DM, Holmes EC, Davis AS, Taubenberger JK. Global rinderpest eradication: lessons learned and why humans should celebrate too. *J Infect Dis* 2011; **204**: 502–05.

309 Sunseri T. The African rinderpest panzootic, 1888–1897. 2018. <https://oxfordre.com/africanhistory/view/10.1093/acrefore/9780190277734.001.0001/acrefore-9780190277734-e-375> (accessed June 2, 2025).

310 Dobson A. The ecology and epidemiology of rinderpest virus in Serengeti and Ngorongoro conservation area. In: Serengeti ARE, Arcese P, eds. Serengeti II: dynamics, management, and conservation of an ecosystem. Chicago, IL: University of Chicago Press, 1995, 355–75.

311 Holdo RM, Sinclair ARE, Dobson AP, et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. *PLoS Biol* 2009; **7**: e1000210.

312 Liu Y, He F. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. *Funct Ecol* 2019; **33**: 1211–22.

313 Scheele BC, Pasmans F, Skerratt LF, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. *Science* 2019; **363**: 1459–63.

314 Crawford AJ, Lips KR, Bermingham E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. *Proc Natl Acad Sci USA* 2010; **107**: 13777–82.

315 Alan Pounds J, Bustamante MR, Coloma LA, et al. Widespread amphibian extinctions from epidemic disease driven by global warming. *Nature* 2006; **439**: 161–67.

316 Jani AJ, Briggs CJ. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. *Proc Natl Acad Sci USA* 2014; **111**: E5049–58.

317 Rohr JR, Barrett CB, Civitello DJ, et al. Emerging human infectious diseases and the links to global food production. *Nat Sustain* 2019; **2**: 445–56.

318 Liu J, Liu B, Shan B, et al. Prevalence of African swine fever in China, 2018–2019. *J Med Virol* 2020; **92**: 1023–34.

319 Kumar S, Deshmukh R. Pork meat market size, share, competitive landscape and trend analysis report, by type, packaging and application: global opportunity analysis and industry forecast, 2021–2027. October, 2020. <https://www.alliedmarketresearch.com/pork-meat-market> (accessed June 2, 2025).

320 Schulz K, Conraths FJ, Blome S, Staubach C, Sauter-Louis C. African swine fever: fast and furious or slow and steady? *Viruses* 2019; **11**: 866.

321 The Business Research Company. Pork meat market report 2025. 2025. <https://www.researchandmarkets.com/reports/5522324/pork-meat-global-market-report-2022-by-meat> (accessed June 15, 2025).

322 Woonwong Y, Do Tien D, Thanawongnuwech R. The future of the pig industry after the introduction of African swine fever into Asia. *Anim Front* 2020; **10**: 30–37.

323 Berthe F. The global economic impact of ASF. *OIE Bull* 2020; **2020**: 1–2.

324 Travillian R. Pig pandemics and other “epizootic” threats | think global health. Council on foreign relations. 2020. <https://www.thinkglobalhealth.org/article/pig-pandemics-and-other-epizootic-threats> (accessed June 2, 2025).

325 Taconelli E, Magrini N, Kahlmeter G, Singh N. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organisation, 2017.

326 The Review on Antimicrobial Resistance. Tackling drug-resistant infections globally: final report and recommendations. May, 2016. https://amr-review.org/sites/default/files/160518_Final%20paper-with%20cover.pdf (accessed May 19, 2025).

327 Laxminarayan R, Boeckel TV, Frost I, et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. *Lancet Infect Dis* 2020; **20**: e51–60.

328 Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. *Lancet* 2022; **399**: 629–55.

329 Harris SR, Feil EJ, Holden MTG, et al. Evolution of MRSA during hospital transmission and intercontinental spread. *Science* 2010; **327**: 469–74.

330 Holden MTG, Hsu LY, Kurt K, et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant *Staphylococcus aureus* pandemic. *Genome Res* 2013; **23**: 653–64.

331 Mutraja A, Kim DW, Thomson NR, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. *Nature* 2011; **477**: 462–65.

332 Harkins CP, Pichon B, Doumith M, et al. Methicillin-resistant *Staphylococcus aureus* emerged long before the introduction of methicillin into clinical practice. *Genome Biol* 2017; **18**: 130.

333 Larsen J, Raisen CL, Ba X, et al. Emergence of methicillin resistance predates the clinical use of antibiotics. *Nature* 2022; **602**: 135–41.

334 Bentley SD, Parkhill J. Genomic perspectives on the evolution and spread of bacterial pathogens. *Proc Biol Sci* 2015; **282**: 20150488.

335 Baquero F, Coque TM, Martínez JL, Aracil-Gisbert S, Lanza VF. Gene transmission in the One Health microbiome and the channels of antimicrobial resistance. *Front Microbiol* 2019; **10**: 2892.

336 Sheppard SK, Guttman DS, Fitzgerald JR. Population genomics of bacterial host adaptation. *Nat Rev Genet* 2018; **19**: 549–65.

337 Gould IM, Reilly J, Bunyan D, Walker A. Costs of healthcare-associated methicillin-resistant *Staphylococcus aureus* and its control. *Clin Microbiol Infect* 2010; **16**: 1721–28.

338 Bosch T, Witteveen S, Haenen A, Landman F, Schouls LM. Next-generation sequencing confirms presumed nosocomial transmission of livestock-associated methicillin-resistant *Staphylococcus aureus* in the Netherlands. *Appl Environ Microbiol* 2016; **82**: 4081–89.

339 Kinross P, Petersen A, Skov R, et al. Livestock-associated methicillin-resistant *Staphylococcus aureus* (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. *Euro Surveill* 2017; 22.

340 van Alen S, Ballhausen B, Peters G, et al. In the centre of an epidemic: fifteen years of LA-MRSA CC398 at the University Hospital Münster. *Vet Microbiol* 2017; **200**: 19–24.

341 Richardson EJ, Bacigalupo R, Harrison EM, et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. *Nat Ecol Evol* 2018; **2**: 1468–78.

342 Danish Health Authority. Guidance on preventing the spread of MRSA, 3rd edn. 2016. <https://en.ssi.dk/-/media/arkiv/uk/surveillance-and-preparedness/infection-control/guidance-on-preventing-the-spread-of-mrsa-3rd-edition-2016.pdf> (accessed May 19, 2025).

343 Norwegian Institute of Public Health. MRSA-veilederen. Nasjonal veileder for å forebygge spredning av meticillinresistente *Staphylococcus aureus* (MRSA) i helseinstitusjoner. 2009. <https://www.fhi.no/globalassets/dokumenterfiler/rapporter/2009-og-eldre/mrsa-veilederen.pdf> (accessed June 2, 2025).

344 Weterings V, Veenemans J, van Rijen M, Kluytmans J. Prevalence of nasal carriage of methicillin-resistant *Staphylococcus aureus* in patients at hospital admission in the Netherlands, 2010–2017: an observational study. *Clin Microbiol Infect* 2019; **25**: 1428.e1–5.

345 Elstrøm P, Grøntvedt CA, Gabrielsen C, et al. Livestock-associated MRSA CC1 in Norway; introduction to pig farms, zoonotic transmission, and eradication. *Front Microbiol* 2019; **10**: 139.

346 Danish Veterinary and Food Administration. MRSA. <https://en.foodvejstyrelsen.dk/animals/animal-health/-monitoring-and-control-of-animal-diseases/mrsa> (accessed June 2, 2025).

347 Borck B, Korsgaard H, Sønksen U, et al. DANMAP annual report: use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals. Food and Humans in Denmark, 2015.

348 Bager F, Bortololia V, Ellis-Iversen J, et al. DANMAP 2016 - use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. National Food Institute, Technical University of Denmark, 2017.

349 Dierikx CM, Hengeveld PD, Veldman KT, et al. Ten years later: still a high prevalence of MRSA in slaughter pigs despite a significant reduction in antimicrobial usage in pigs the Netherlands. *J Antimicrob Chemother* 2016; **71**: 2414–18.

350 van de Sande-Bruinsma N, Leverstein van Hall MA, Janssen M, et al. Impact of livestock-associated MRSA in a hospital setting. *Antimicrob Resist Infect Control* 2015; **4**: 11.

351 Shen Y, Zhou H, Xu J, et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. *Nat Microbiol* 2018; **3**: 1054–62.

352 Cocker D, Chidzivisano K, Mphasa M, et al. Investigating One Health risks for human colonisation with extended spectrum β -lactamase-producing *Escherichia coli* and *Klebsiella pneumoniae* in Malawian households: a longitudinal cohort study. *Lancet Microbe* 2023; **4**: e534–43.

353 Dieye Y, Hull DM, Wane AA, et al. Genomics of human and chicken *Salmonella* isolates in Senegal: broilers as a source of antimicrobial resistance and potentially invasive nontyphoidal salmonellosis infections. *PLoS One* 2022; **17**: e0266025.

354 Murray M, Salvatierra G, Dávila-Barclay A, et al. Market chickens as a source of antibiotic-resistant *Escherichia coli* in a peri-urban community in Lima, Peru. *Front Microbiol* 2021; **12**: 635871.

355 Olorunleke SO, Kirchner M, Duggett N, et al. Molecular characterization of extended spectrum cephalosporin resistant *Escherichia coli* isolated from livestock and in-contact humans in southeast Nigeria. *Front Microbiol* 2022; **13**: 937968.

356 Allel K, Day L, Hamilton A, et al. Global antimicrobial-resistance drivers: an ecological country-level study at the human–animal interface. *Lancet Planet Health* 2023; **7**: e291–303.

357 Larsson DGJ, Flach CF. Antibiotic resistance in the environment. *Nat Rev Microbiol* 2022; **20**: 257–69.

358 Sun S, Lu C, Liu J, et al. Antibiotic resistance gene abundance and bacterial community structure in soils altered by ammonium and nitrate concentrations. *Soil Biol Biochem* 2020; **149**: 107965.

359 Kraemer SA, Ramachandran A, Perron GG. Antibiotic pollution in the environment: from microbial ecology to public policy. *Microorganisms* 2019; **7**: 180.

360 FAO. Prominent global leaders in science, industry and government meet to step up fight against antimicrobial resistance. <https://www.fao.org/newsroom/detail/Prominent-global-leaders-in-science-industry-and-government-meet-to-step-up-fight-against-antimicrobial-resistance/en> (accessed May 19, 2025).

361 Strategic framework for collaboration on antimicrobial resistance. <https://iris.who.int/bitstream/handle/10665/352625/9789240045408-eng.pdf?sequence=1> (accessed June 2, 2025).

362 UN Multi-Partner Trust Fund Office. Antimicrobial resistance multi-partner trust fund. <https://mptf.undp.org/fund/amr00> (accessed June 2, 2025).

363 Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. *Lancet* 2017; **390**: 1151–210.

364 Bloom DE, Cafiero E, Jané-Llopis E, et al. The global economic burden of noncommunicable diseases. PGDA working papers. Program on the global demography of aging. 2012. (PGDA Working Papers). Report No.: 8712. <https://ideas.repec.org/p/gdm/wpaper/8712.html> (accessed June 2, 2025).

365 Brito IL, Gurry T, Zhao S, et al. Transmission of human-associated microbiota along family and social networks. *Nat Microbiol* 2019; **4**: 964–71.

366 Pérez-Serrano RM, Domínguez-Pérez RA, Ayala-Herrera JL, et al. Dental plaque microbiota of pet owners and their dogs as a shared source and reservoir of antimicrobial resistance genes. *J Glob Antimicrob Resist* 2020; **21**: 285–90.

367 Finlay BB, Humans CIFAR. The microbiome. Are noncommunicable diseases communicable? *Science* 2020; **367**: 250–51.

368 de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. *Lancet Glob Health* 2020; **8**: e180–90.

369 Bañuls A, Thomas F, Renaud F. Of parasites and men. *Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis*. 2013; **20**: 61–70.

370 Gardner H, Miles G, Saleem A, et al. Social determinants of health and the double burden of disease in Nepal: a secondary analysis. *BMC Public Health* 2022; **22**: 1567.

371 Kundu J, Chakraborty R. Socio-economic inequalities in burden of communicable and non-communicable diseases among older adults in India: evidence from longitudinal ageing study in India, 2017–18. *PLoS One* 2023; **18**: e0283385.

372 Turton R, Chami R, Treasure J. Emotional eating, binge eating and animal models of binge-type eating disorders. *Curr Obes Rep* 2017; **6**: 217–28.

373 Prüss-Ustün A, van Deventer E, Mudu P, et al. Environmental risks and non-communicable diseases. *BMJ* 2019; **364**: 1265.

374 King TA. The One Medicine concept: its emergence from history as a systematic approach to re-integrate human and veterinary medicine. *Emerg Top Life Sci* 2021; **5**: 643–54.

375 Christakis NA, Fowler JH. The spread of obesity in a large social network over 32 years. *N Engl J Med* 2007; **357**: 370–79.

376 Bjørnsvad CR, Gloor S, Johansen SS, Sandø P, Lund TB. Neutering increases the risk of obesity in male dogs but not in bitches - a cross-sectional study of dog- and owner-related risk factors for obesity in Danish companion dogs. *Prev Vet Med* 2019; **170**: 104730.

377 Hodgson K, Darling M. Zooeyia: an essential component of “One Health.”. *Can Vet J* 2011; **52**: 189–91.

378 Westgarth C, Christley RM, Jewell C, German AJ, Boddy LM, Christian HE. Dog owners are more likely to meet physical activity guidelines than people without a dog: an investigation of the association between dog ownership and physical activity levels in a UK community. *Sci Rep* 2019; **9**: 5704.

379 Businelle MS, Mills BA, Chartier KG, Kendzor DE, Reingle JM, Shuval K. Do stressful events account for the link between socioeconomic status and mental health? *J Public Health (Oxf)* 2014; **36**: 205–21.

380 Card C, Epp T, Lem M. Exploring the social determinants of animal health. *J Vet Med Educ* 2018; **45**: 437–47.

381 Natterer-Horowitz B, Desmarchelier M, Winkler AS, Carabin H. Beyond zoonoses in One Health: non-communicable diseases across the animal kingdom. *Front Public Health* 2022; **9**: 807186.

382 Fischer LA, Shankle S, Schwieterman JP, Bathurst CL. Companion animals and Chicago communities: a strategic assessment for the city of Chicago. Chicago, IL: Chaddick Institute for Metropolitan Development and Best Friends Animal Society, 2010.

383 McMillan FD. Behavioral and psychological outcomes for dogs sold as puppies through pet stores and/or born in commercial breeding establishments: current knowledge and putative causes. *J Vet Behav* 2017; **19**: 14–26.

384 Baaghidéh M, Mayvaneh F. Climate change and simulation of cardiovascular disease mortality: a case study of Mashhad, Iran. *Iran J Public Health* 2017; **46**: 396–407.

385 Ruszkiewicz JA, Tinkov AA, Skalny AV, et al. Brain diseases in changing climate. *Environ Res* 2019; **177**: 108637.

386 Lacetera N. Impact of climate change on animal health and welfare. *Anim Front* 2019; **9**: 26–31.

387 Soravia C, Ashton BJ, Thornton A, Ridley AR. The impacts of heat stress on animal cognition: implications for adaptation to a changing climate. *Wiley Interdiscip Rev Clim Change* 2021; **12**: e713.

388 St-Pierre NR, Cobanov B, Schnitkey G. Economic losses from heat stress by US livestock industries. *J Dairy Sci* 2003; **86**: E52–77.

389 Webster I. Value of \$1 from 2003 to 2022. CPI Inflation Calculator. 2022. <https://www.in2013dollars.com/us/inflation/2003?amount=1> (accessed June 3, 2025).

390 Landrigan PJ, Fuller R, Acosta NJR, et al. The *Lancet* Commission on pollution and health. *Lancet* 2018; **391**: 462–512.

391 Hoek G, Krishnan RM, Beelen R, et al. Long-term air pollution exposure and cardio-respiratory mortality: a review. *Environ Health* 2013; **12**: 43.

392 Frumkin H, Haines A. Global environmental change and noncommunicable disease risks. *Annu Rev Public Health* 2019; **40**: 261–82.

393 Zhao J, Li M, Wang Z, et al. Role of PM_{2.5} in the development and progression of COPD and its mechanisms. *Respir Res* 2019; **20**: 120.

394 Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. *Int J Mol Sci* 2020; **21**: 4306.

395 Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. *Front Cell Neurosci* 2015; **9**: 124.

396 Fu P, Guo X, Cheung FMH, Yung KKL. The association between PM2.5 exposure and neurological disorders: a systematic review and meta-analysis. *Sci Total Environ* 2019; **655**: 1240–48.

397 WHO. Ambient air pollution: a global assessment of exposure and burden of disease. 2016; <https://apps.who.int/iris/bitstream/handle/10665/250141/9789241511353-eng.pdf?sequence=1&isAllowed=y> (accessed May 19, 2025).

398 Loomis D, Huang W, Chen G. The International Agency for Research on Cancer (IARC) evaluation of the carcinogenicity of outdoor air pollution: focus on China. *Chin J Cancer* 2014; **33**: 189–96.

399 Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. *Int J Environ Res Public Health* 2020; **17**: E1212.

400 Zhang S, Wang J, Liu X, et al. Microplastics in the environment: a review of analytical methods, distribution, and biological effects. *Trends Analys Chem* 2019; **111**: 62–72.

401 Bossart GD. Marine mammals as sentinel species for oceans and human health. *Vet Pathol* 2011; **48**: 676–90.

402 Martineau D, Lemberger K, Dallaire A, et al. Cancer in wildlife, a case study: beluga from the St. Lawrence estuary, Québec, Canada. *Environ Health Perspect* 2002; **110**: 285–92.

403 UN Environment Programme. Per- and polyfluoroalkyl substances (PFASs). UNEP - UN Environment Programme. 2023. <https://www.unep.org/topics/chemicals-and-pollution-action/pollution-and-health/persistent-organic-pollutants-pops/and> (accessed June 2, 2025).

404 Starnes HM, Rock KD, Jackson TW, Belcher SM. A critical review and meta-analysis of impacts of per- and polyfluorinated substances on the brain and behavior. *Front Toxicol* 2022; **4**: 881584.

405 Wee SY, Aris AZ. Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. *Ecotoxicol Environ Saf* 2023; **267**: 115663.

406 Guynup S. PFAS 'forever chemicals' harming wildlife the world over: study. Mongabay Environmental News. 2023. <https://news.mongabay.com/2023/09/pfas-forever-chemicals-harming-wildlife-the-world-over-study/> (accessed June 2, 2025).

407 US Environmental Protection Agency. Per- and polyfluoroalkyl substances (PFAS). <https://www.epa.gov/pfas> (accessed June 2, 2025).

408 European Chemicals Agency. Per- and polyfluoroalkyl substances (PFAS). <https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas> (accessed June 2, 2025).

409 Ssebugere P, Sillanpää M, Matovu H, et al. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: a critical review. *Sci Total Environ* 2020; **739**: 139913.

410 Yerbury RM, Lukey SJ. Human-animal interactions: expressions of well-being through a "nature language". *Animals (Basel)* 2021; **11**: 950.

411 Doherty TS, Dickman CR, Glen AS, et al. The global impacts of domestic dogs on threatened vertebrates. *Biol Conserv* 2017; **210**: 56–59.

412 Lepczyk CA, Fantle-Lepczyk JE, Dunham KD, et al. A global synthesis and assessment of free-ranging domestic cat diet. *Nat Commun* 2023; **14**: 7809.

413 Okin GS. Environmental impacts of food consumption by dogs and cats. *PLoS One* 2017; **12**: e0181301.

414 Pedrinelli V, Teixeira FA, Queiroz MR, Brunetto MA. Environmental impact of diets for dogs and cats. *Sci Rep* 2022; **12**: 18510.

415 Rah H, Choi SH. Are veterinary costs and socioeconomic status risk factors for companion animal relinquishment in the Republic of Korea? *Animals (Basel)* 2023; **13**: 3406.

416 Losacco C, Perillo A. Particulate matter air pollution and respiratory impact on humans and animals. *Environ Sci Pollut Res Int* 2018; **25**: 33901–10.

417 Bikomeye JC, Rublee CS, Beyer KMM. Positive externalities of climate change mitigation and adaptation for human health: a review and conceptual framework for public health research. *Int J Environ Res Public Health* 2021; **18**: 2481.

418 Harmens H, Fisher R, Forsius M, et al. Benefits of air pollution control for biodiversity and ecosystem services. Bangor, UK: Working Group on Effects, 2013.

419 Igini M. 5 Effective air pollution prevention strategies. Earth.Org. 2022. <https://earth.org/air-pollution-prevention/> (accessed June 2, 2025).

420 WHO. STEPwise approach to NCD risk factor surveillance (STEPS). <https://www.who.int/teams/noncommunicable-diseases/surveillance/systems-tools/steps> (accessed June 2, 2025).

421 WHO. Compact NCD. <https://www.who.int/publications/m/item/ncd-compact> (accessed June 2, 2025).

422 Markert E, Levine A, Vazquez A. Proliferation and tissue remodeling in cancer: the hallmarks revisited. *Cell Death Dis* 2012; **3**: e397.

423 Allavena P, Garlanda C, Borrello MG, Sica A, Mantovani A. Pathways connecting inflammation and cancer. *Curr Opin Genet Dev* 2008; **18**: 3–10.

424 Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernández JC. Inflammatory effects of particulate matter air pollution. *Environ Sci Pollut Res Int* 2020; **27**: 42390–404.

425 Nürnberg T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. *Immunol Rev* 2004; **198**: 249–66.

426 Duxbury Z, Ma Y, Furzer OJ, et al. Pathogen perception by NLRs in plants and animals: parallel worlds. *BioEssays* 2016; **38**: 769–81.

427 Chanclud E, Lacombe B. Plant hormones: key players in gut microbiota and human diseases? *Trends Plant Sci* 2017; **22**: 754–58.

428 Paterson JR, Baxter G, Dreyer JS, Halket JM, Flynn R, Lawrence JR. Salicylic acid sans aspirin in animals and man: persistence in fasting and biosynthesis from benzoic acid. *J Agric Food Chem* 2008; **56**: 11648–52.

429 Dempsey DA, Klessig DF. How does the multifaceted plant hormone salicylic acid combat disease in plants and are similar mechanisms utilized in humans? *BMC Biol* 2017; **15**: 23.

430 Whittaker M, Obrist B, Berger-González M. The role of social sciences in one health - reciprocal benefits. In: Zinsstag J, Schelling E, Crump L, Whittaker M, Tanner M, Stephen C, eds. One Health: the theory and practice of integrated health approaches. CABI, 2021: 71–87.

431 Rocheleau JP, Aenishanslin C, Boisjoly H, et al. Clarifying core competencies in One Health doctoral education: the central contribution of systems thinking. *One Earth* 2022; **5**: 311–15.

432 Sponsler DB, Grozinger CM, Hitaj C, et al. Pesticides and pollinators: a socioecological synthesis. *Sci Total Environ* 2019; **662**: 1012–27.

433 Nzietchueng S, Kitua A, Nyatanyi T, Rwego IB. Facilitating implementation of the one health approach: a definition of a one health intervention. *One Health* 2023; **16**: 100491.

434 Urban L, Perlas A, Francino O, et al. Real-time genomics for One Health. *Mol Syst Biol* 2023; **19**: e11686.

435 Bird BH, Mazet JAK. Detection of emerging zoonotic pathogens: an integrated One Health approach. *Annu Rev Anim Biosci* 2018; **6**: 121–39.

436 Chiu CY, Miller SA. Clinical metagenomics. *Nat Rev Genet* 2019; **20**: 341–55.

437 Hansen S, Abd El Wahed A. Point-of-care or point-of-need diagnostic tests: time to change outbreak investigation and pathogen detection. *Trop Med Infect Dis* 2020; **5**: 151.

438 Stelzle D, Makasi CE, Schmidt V, et al. Evaluation of a point-of-care test for the diagnosis of *Taenia solium* neurocysticercosis in rural southern Tanzania: a diagnostic accuracy study. *Lancet Infect Dis* 2024; **24**: 98–106.

439 Bezerra MF, dos Santos WJT, Rocha IV, et al. Performance assessment of a new indirect rapid diagnostic test for plague detection in humans and other mammalian hosts. *Acta Trop* 2022; **231**: 106427.

440 Wilson AD. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. *Chemosensors (Basel)* 2018; **6**: 45.

441 Cortina ME, Melli LJ, Roberti M, et al. Electrochemical magnetic microbeads-based biosensor for point-of-care serodiagnosis of infectious diseases. *Biosens Bioelectron* 2016; **80**: 24–33.

442 Rani A, Ravindran VB, Surapaneni A, Mantri N, Ball AS. Review: trends in point-of-care diagnosis for *Escherichia coli* O157:H7 in food and water. *Int J Food Microbiol* 2021; **349**: 109233.

443 Granger JH, Schlotter NE, Crawford AC, Porter MD. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). *Chem Soc Rev* 2016; **45**: 3865–82.

444 Schurer JM, Nishimwe A, Hakizimana D, et al. A One Health systematic review of diagnostic tools for *Echinococcus multilocularis* surveillance: towards equity in global detection. *Food Waterborne Parasitol* 2019; **15**: e00048.

445 Kaminski MM, Abudayeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. *Nat Biomed Eng* 2021; **5**: 643–56.

446 Jolany Vangah S, Katalani C, Boone HA, Hajizade A, Sijercic A, Ahmadian G. JCRISPR-based diagnosis of infectious and noninfectious diseases. *Biol Proced Online* 2020; **22**: 22.

447 de Puig H, Lee RA, Najar D, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. *Sci Adv* 2021; **7**: eabh2944.

448 Sima N, Dujeancourt-Henry A, Perlaza BL, Ungeheuer MN, Rotureau B, Glover L. SHERLOCK4HAT: a CRISPR-based tool kit for diagnosis of human African trypanosomiasis. *EBioMedicine* 2022; **85**: 104308.

449 Public Health Agency of Canada. Canadian science centre for human and animal health celebrates 20 years of scientific excellence. Public Health Agency of Canada. 2019. <https://www.canada.ca/en/public-health/news/2019/05/canadian-science-centre-for-human-and-animal-health-celebrates-20-years-of-scientific-excellence.html> (accessed June 2, 2025).

450 Public Health Agency of Canada. Global experts join together to learn about pandemic preparedness. 2023. <https://science.gc.ca/site/science/en/blogs/cultivating-science/global-experts-join-together-learn-about-pandemic-preparedness> (accessed June 6, 2025).

451 Boffey D. Veterinary scientist hailed for Faroe Islands' lack of Covid-19 deaths. The Guardian, 2020. <http://www.theguardian.com/world/2020/apr/08/veterinary-scientist-hailed-faroe-islands-lack-covid-19-deaths> (accessed June 2, 2025).

452 Simoens S. The cost-effectiveness of prevention: is an ounce of prevention worth a pound of cure? *Farmeconomia Health Econ Ther Pathw* 2012; **13**: 5–6.

453 CDC. History of Smallpox. Smallpox. 2021. <https://www.cdc.gov/smallpox/history/history.html> (accessed June 2, 2025).

454 Warimwe G, Gesharisha J, Carr B, et al. Chimpanzee adenovirus vaccine provides multispecies protection against Rift Valley fever. *Sci Rep* 2016; **6**: 20617.

455 Warimwe GM, Francis MJ, Bowden TA, Thumbi SM, Charleston B. Using cross-species vaccination approaches to counter emerging infectious diseases. *Nat Rev Immunol* 2021; **21**: 815–22.

456 Cleaveland S, Thumbi SM, Sambo M, et al. Proof of concept of mass dog vaccination for the control and elimination of canine rabies. *Rev Sci Tech* 2018; **37**: 559–68.

457 Crump A, Ômura S. Ivermectin, 'wonder drug' from Japan: the human use perspective. *Proc Jpn Acad, Ser B, Phys Biol Sci* 2011; **87**: 13–28.

458 Simoens S, Huys I. R&D costs of new medicines: a landscape analysis. *Front Med* 2021; **8**: 760762.

459 Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. *JAMA* 2020; **323**: 844–53.

460 Saied AA, Metwally AA, Dhawan M, Choudhary OP, Aiash H. Strengthening vaccines and medicines manufacturing capabilities in Africa: challenges and perspectives. *EMBO Mol Med* 2022; **14**: e16287.

461 Choe EY, Jorgensen A, Sheffield D. Does a natural environment enhance the effectiveness of Mindfulness-Based Stress Reduction (MBSR)? Examining the mental health and wellbeing, and nature connectedness benefits. *Landsc Urban Plan* 2020; **202**: 103886.

462 Institut de Cardiologie de Montréal. Les bienfaits de la nature sur la santé globale. 2021. https://www.sepaq.com/resources/docs/org/autres/org_icm_rapport_nature_sante_globale.pdf.

463 Alcock I, White MP, Pahl S, Duarte-Davidson R, Fleming LE. Associations between pro-environmental behaviour and neighbourhood nature, nature visit frequency and nature appreciation: evidence from a nationally representative survey in England. *Environ Int* 2020; **136**: 105441.

464 Pinto JC, Keestra S, Tandon P, Chandler CIR. WASH and biosecurity interventions for reducing burdens of infection, antibiotic use and antimicrobial resistance in animal agricultural settings: a One Health mixed methods systematic review. London School of Hygiene & Tropical Medicine; 2020. https://researchonline.lshtm.ac.uk/id/eprint/4658914/1/Pinto-et-al-2020_WASH_and_biosecurity-Interventions_for_AMR-Review.pdf (accessed June 2, 2025).

465 Okello A, Vandersmissen A, Welburn SC. One Health into action: integrating global health governance with national priorities in a globalised world. In: Zinsstag J, Schelling E, Crump L, Whittaker M, Tanner M, Stephen C, eds. One Health: the theory and practice of integrated health approaches, 2nd edn. CABI, 2021: 394–409.

466 Häslar B, Gilbert W, Jones BA, Pfeiffer DU, Rushton J, Otte MJ. The economic value of One Health in relation to the mitigation of zoonotic disease risks. *Curr Top Microbiol Immunol* 2013; **365**: 127–51.

467 Okello WO, Okello AL, Inthavong P, et al. Improved methods to capture the total societal benefits of zoonotic disease control: demonstrating the cost-effectiveness of an integrated control programme for *Taenia solium*, soil transmitted helminths and classical swine fever in northern Lao PDR. *PLoS Negl Trop Dis* 2018; **12**: e0006782.

468 Okello AL, Thomas L, Inthavong P, et al. Assessing the impact of a joint human-porcine intervention package for *Taenia solium* control: results of a pilot study from northern Lao PDR. *Acta Trop* 2016; **159**: 185–91.

469 Bardosh K, Inthavong P, Xayaheuang S, Okello AL. Controlling parasites, understanding practices: the biosocial complexity of a One Health intervention for neglected zoonotic helminths in northern Lao PDR. *Soc Sci Med* 2014; **120**: 215–23.

470 Pattanayak SK, Kramer RA, Vincent JR. Ecosystem change and human health: implementation economics and policy. *Philos Trans R Soc Lond B Biol Sci* 2017; **372**: 20160130.

471 Degeling C, Rock M. Qualitative research for One Health: from methodological principles to impactful applications. *Front Vet Sci* 2020; **7**: 70.

472 Ash A, Okello A, Khamlome B, Inthavong P, Allen J, Thompson RCA. Controlling *Taenia solium* and soil transmitted helminths in a northern Lao PDR village: impact of a triple dose albendazole regime. *Acta Trop* 2017; **174**: 171–78.

473 Boelée E, Laamrani H. Environmental control of schistosomiasis through community participation in a Moroccan oasis. *Trop Med Int Health* 2004; **9**: 997–1004.

474 Holst C, Isabwe GMN, Sukums F, et al. Development of digital health messages for rural populations in Tanzania: multi- and interdisciplinary approach. *JMIR Mhealth Uhealth* 2021; **9**: e25558.

475 Guggenheim R. Bringing the planet into the generalist practice: a form of preventive care. *Lancet Planet Health* 2018; **2**: e200–01.

476 WHO. The Geneva charter for well-being. 2021. https://cdn.who.int/media/docs/default-source/health-promotion/geneva-charter-4-march-2022.pdf?sfvrsn=f55dec7_21&download=true (accessed June 2, 2025).

477 Ferrinho P, Daniel-Ribeiro CT, Ferrinho R, Fronteira I. Building blocks to develop one health systems. *One Health* 2023; **17**: 100624.

478 WHO. The Alliance for Health Policy and Systems Research. Systems thinking for health systems strengthening. World Health Organization, 2009.

479 Franck Cesar Jean MB. Bouley, Timothy, Karesh, William B, Le Gall, Francois G, Machalaba, Catherine Christina, Plante, Caroline Aurelie, Seifman, Richard. Operational framework for strengthening human, animal and environmental public health systems at their interface. World Bank. <https://documents1.worldbank.org/curated/en/703711517234402168/pdf/123023-REVISED-PUBLIC-World-Bank-One-Health-Framework-2018.pdf> (accessed June 2, 2025).

480 Health Care Without Harm. Health care climate footprint report. <https://global.noharm.org/media/4370/download?inline=1> (accessed June 2, 2025).

481 UHC2030. 2024–2027 strategic framework. <https://www.uhc2030.org/who-we-are/governance/2024-2027-strategic-framework/> (accessed June 3, 2025).

482 Sweeney JM, Zielinska Crook P, Deep-Sossa N, Tu B, Dear JD, Mazet JAK. Clinical one health: a novel healthcare solution for underserved communities. *One Health* 2018; **6**: 34–36.

483 Rabinowitz P, Conti L. Links among human health, animal health, and ecosystem health. *Annu Rev Public Health* 2013; **34**: 189–204.

484 Essack SY. Environment: the neglected component of the One Health triad. *Lancet Planet Health* 2018; **2**: e238–39.

485 Falzon LC, Lechner I, Chantziras I, et al. Quantitative outcomes of a One Health approach to study global health challenges. *EcoHealth* 2018; **15**: 209–27.

486 Auplish A, Raj E, Boojink Y, et al. Current evidence of the economic value of One Health initiatives: a systematic literature review. *One Health* 2024; **18**: 100755.

487 Dobson AP, Pimm SL, Hannah L, et al. Ecology and economics for pandemic prevention. *Science* 2020; **369**: 379–81.

488 Baum SE, Machalaba C, Daszak P, Salerno RH, Karesh WB. Evaluating One Health: are we demonstrating effectiveness? *One Health* 2017; **3**: 5–10.

489 Antonides CFJ, Cohen DJ, Osnabrugge RLJ. Statistical primer: a cost-effectiveness analysis†. *Eur J Cardiothorac Surg* 2018; **54**: 209–13.

490 Sanders GD, Neumann PJ, Basu A, et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. *JAMA* 2016; **316**: 1093–103.

491 Asaria M, Griffin S, Cookson R. Distributional cost-effectiveness analysis: a tutorial. *Med Decis Making* 2016; **36**: 8–19.

492 Marsh K, Ganz ML, Hsu J, Strandberg-Larsen M, Gonzalez RP, Lund N. Expanding health technology assessments to include effects on the environment. *Value Health* 2016; **19**: 249–54.

493 Suijkerbuijk AWM, van Gils PF, Bonačić Marinović AA, et al. The design of a social cost-benefit analysis of preventive interventions for toxoplasmosis: an example of the One Health approach. *Zoonoses Public Health* 2018; **65**: 185–94.

494 Mathes T, Jacobs E, Morfeld JC, Pieper D. Methods of international health technology assessment agencies for economic evaluations: a comparative analysis. *BMC Health Serv Res* 2013; **13**: 371.

495 Husereau D, Drummond M, Augustovski F, et al. Consolidated health economic evaluation reporting standards (CHEERS) 2022 explanation and elaboration: a report of the ISPOR CHEERS II good practices task force. *Value Health* 2022; **25**: 10–31.

496 Curran MA. Life Cycle Assessment: a review of the methodology and its application to sustainability. *Curr Opin Chem Eng* 2013; **2**: 273–77.

497 Huertas-Valdivia I, Ferrari AM, Settembre-Blundo D, García-Muñiz FE. Social life-cycle assessment: a review by bibliometric analysis. *Sustainability* 2020; **12**: 6211.

498 Durão V, Silvestre JD, Mateus R, Brito JD. Economic valuation of life cycle environmental impacts of construction products - a critical analysis. *ICP Conf Ser Earth Environ Sci* 2019; **323**: 012147.

499 Zhao J, Smith T, Lavigne M, et al. A rapid literature review of multi-criteria decision support methods in the context of One Health for all-hazards threat prioritization. *Front Public Health* 2022; **10**: 861594.

500 Zanghelini GM, Cherubini E, Soares SR. How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. *J Clean Prod* 2018; **172**: 609–22.

501 Currie DJ, Smith C, Jagals P. The application of system dynamics modelling to environmental health decision-making and policy - a scoping review. *BMC Public Health* 2018; **18**: 402.

502 Gouda HN, Critchley J, Powles J, Capewell S. Why choice of metric matters in public health analyses: a case study of the attribution of credit for the decline in coronary heart disease mortality in the US and other populations. *BMC Public Health* 2012; **12**: 88.

503 Kaplan RM, Hays RD. Health-related quality of life measurement in public health. *Annu Rev Public Health* 2022; **43**: 355–73.

504 National Council on Disability. Quality-adjusted life years and the devaluation of life with disability. Nov 6, 2019. https://ncd.gov/sites/default/files/NCD_Quality_Adjusted_Life_Report_508.pdf.

505 Chen A, Jacobsen KH, Deshmukh AA, Cantor SB. The evolution of the disability-adjusted life year (DALY). *Socioecon Plann Sci* 2015; **49**: 10–15.

506 Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet* 2020; **396**: 1204–22.

507 Devleesschauwer B, Havelaar AH, Maertens de Noordhout C, et al. DALY calculation in practice: a stepwise approach. *Int J Public Health* 2014; **59**: 571–74.

508 Brazier J, Tsuchiya A. Improving cross-sector comparisons: going beyond the health-related QALY. *Appl Health Econ Health Policy* 2015; **13**: 557–65.

509 Månsdotter A, Ekman B, Feldman I, Hagberg L, Hurtig AK, Lindholm L. We propose a novel measure for social welfare and public health: capability-adjusted life-years, CAIYs. *Appl Health Econ Health Policy* 2017; **15**: 437–40.

510 Torgerson PR, Rüegg S, Devleesschauwer B, et al. zDALY: an adjusted indicator to estimate the burden of zoonotic diseases. *One Health* 2018; **5**: 40–45.

511 Teng KTY, Devleesschauwer B, Noordhout CMD, et al. Welfare-adjusted life years (WALY): a novel metric of animal welfare that combines the impacts of impaired welfare and abbreviated lifespan. *PLoS One* 2018; **13**: e0202580.

512 Weathers ST, Caviola L, Scherer L, et al. Quantifying the valuation of animal welfare among Americans. *J Agric Environ Ethics* 2020; **33**: 261–82.

513 Scherer L, Tomasik B, Rueda O, Pfister S. Framework for integrating animal welfare into life cycle sustainability assessment. *Int J Life Cycle Assess* 2018; **23**: 1476–90.

514 Owens JW. LCA impact assessment categories. *Int J Life Cycle Assess* 1996; **1**: 151–58.

515 Hillege L. Impact categories (LCA) - overview. Ecochain. 2019. <https://ecochain.com/knowledge/impact-categories-lca/> (accessed June 3, 2025).

516 Gallup. Gallup world poll: Global Happiness Center. Gallup. 2022. <https://www.gallup.com/analytics/349487/gallup-global-happiness-center.aspx> (accessed June 3, 2025).

517 Sustainable Development of Solutions Network. World Happiness Report. 2022. <https://happiness-report.s3.amazonaws.com/2022/WHR+22.pdf> (accessed June 3, 2025).

518 Coles E, Viswanath K. Pursuing happiness and health: defining, measuring, and translating wellbeing in policy and practice. New York: Harvard T.H. Chan School of Public Health, 2019. <https://cdn1.sph.harvard.edu/wp-content/uploads/sites/2320/2020/04/Pursuing-Happiness-and-Health-Coles-and-Viswanath.pdf>.

519 Zhang XX, Liu JS, Han LF, et al. Towards a global One Health index: a potential assessment tool for One Health performance. *Infect Dis Poverty* 2022; **11**: 57.

520 Greve B. How to measure social progress? *Soc Policy Adm* 2017; **51**: 1002–22.

521 Colmer J. What is the meaning of (statistical) life? Benefit–cost analysis in the time of COVID-19. *Oxf Rev Econ Policy* 2020; **36** (suppl 1): S56–63.

522 Herrera-Araujo D, Mikecz O, Pica-Ciamarra U. Placing a monetary value on the human health component of zoonotic diseases: a methodological note with an application to cysticercosis in Africa. *Prev Vet Med* 2020; **175**: 104862.

523 Rigby D, Payne K, Wright S, et al. Estimating quality adjusted life years and willingness to pay values for microbiological foodborne disease (phase 2). Econ Environ Consult. March. 2017. https://pure.manchester.ac.uk/ws/portalfiles/portal/87672017/FSA_2017.pdf (accessed June 3, 2025).

524 Skedgel CD, Wailoo AJ, Akehurst RL. Choosing vs. allocating: discrete choice experiments and constant-sum paired comparisons for the elicitation of societal preferences. *Health Expect* 2015; **18**: 1227–40.

525 Larg A, Moss JR. Cost-of-illness studies. *PharmacoEconomics* 2011; **29**: 653–71.

526 Amadei AM, De Laurentiis V, Sala S. A review of monetary valuation in life cycle assessment: state of the art and future needs. *J Clean Prod* 2021; **329**: 129668.

527 Pizzol M, Weidema B, Brandão M, Osset P. Monetary valuation in life cycle assessment: a review. *J Clean Prod* 2015; **86**: 170–79.

528 Costanza R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. *Ecosyst Serv* 2020; **43**: 101096.

529 Garcia JR. Economics of the Genuine Progress Indicator. March 25, 2021. <https://oxfordre.com/environmentalscience/display/10.1093/acrefore/9780199389414.001.0001/acrefore-9780199389414-e-776> (accessed May 19, 2025).

530 Compston P, Limon G, Häslér B. A systematic review of the methods used to analyse the economic impact of endemic foot-and-mouth disease. *Transbound Emerg Dis* 2022; **69**: e2249–60.

531 Huntington B, Bernardo TM, Bondad-Reantaso M, et al. Global burden of animal diseases: a novel approach to understanding and managing disease in livestock and aquaculture. *Rev Sci Tech* 2021; **40**: 567–84.

532 Robinson A, Gyrd-Hansen D, Bacon P, Baker R, Pennington M, Donaldson C. Estimating a WTP-based value of a QALY: the 'chained' approach. *Soc Sci Med* 2013; **92**: 92–104.

533 Cookson R. Willingness to pay methods in health care: a sceptical view. *Health Econ* 2003; **12**: 891–94.

534 Roth F, Zinsstag J, Orkhon D, et al. Human health benefits from livestock vaccination for brucellosis: case study. *Bull World Health Organ* 2003; **81**: 867–76.

535 Zinsstag J, Dürr S, Penny MA, et al. Transmission dynamics and economics of rabies control in dogs and humans in an African city. *Proc Natl Acad Sci USA* 2009; **106**: 14996–5001.

536 Suijkerbuijk AWM, Over EAB, Opsteegh M, et al. A social cost-benefit analysis of two One Health interventions to prevent toxoplasmosis. *PLoS One* 2019; **14**: e0216615.

537 Royal Society of Tropical Medicine and Hygiene, United to Combat Neglected Tropical Diseases. Recommendations for world leaders, including G7 leaders, on One Health. March 2021. <https://thedocs.worldbank.org/en/doc/b6d8193cf37c50ca9112b87f2443464f-0290032022/original/Royal-Society-of-Tropical-Medicine-and-Hygiene.pdf> (accessed May 19, 2025).

538 Pavletic CF, Larrieu E, Guarnera EA, et al. Cystic echinococcosis in South America: a call for action. *Rev Panam Salud Publica* 2017; **41**: e42.

539 Cleaveland S, Lankester F, Townsend S, Lembo T, Hampson K. Rabies control and elimination: a test case for One Health. *Vet Rec* 2014; **175**: 188–93.

540 Mindekem R, Lechenne MS, Naissengar KS, et al. Cost description and comparative cost efficiency of post-exposure prophylaxis and canine mass vaccination against rabies in N'Djamena, Chad. *Front Vet Sci* 2017; **4**: 38.

541 Vigilato M a. N, Molina-Flores B, Del Rio Vilas VJ, Pompei JC, Cosivi O. Canine rabies elimination: governance principles. *Rev Sci Tech* 2018; **37**: 703–09.

542 FAO. Sustainable Food Systems – Concept and Framework. 2018. <http://www.fao.org/3/ca2079en/CA2079EN.pdf> (accessed June 3, 2025).

543 The Food and Land Use Coalition. Growing better: ten critical transitions to transform food and land use. 2019. <https://www.foodandlandusecoalition.org/wp-content/uploads/2019/09/FOLU-GrowingBetter-GlobalReport.pdf> (accessed June 3, 2025).

544 Cook EAJ, de Glanville WA, Thomas LF, Kariuki S, Bronsvoort BMC, Fèvre EM. Working conditions and public health risks in slaughterhouses in western Kenya. *BMC Public Health* 2017; **17**: 14.

545 Li S, Subbiah J, Dvorak B. Environmental and occupational impacts from U.S. beef slaughtering are of same magnitude of beef foodborne illnesses on human health. *Environ Int* 2019; **129**: 507–16.

546 Havelaar AH, Kirk MD, Torgerson PR, et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. *PLoS Med* 2015; **12**: e1001923.

547 Jaffee S, Henson S, Unnevehr L, Grace D, Cassou E. The status of food safety management in developing countries. Agriculture and food series. Washington, DC: World Bank, 2019.

548 Boeckel TPV, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. *Proc Natl Acad Sci USA* 2015; **112**: 5649–54.

549 FAO. About Codex | CODEXALIMENTARIUS FAO-WHO. <https://www.fao.org/fao-who-codexalimentarius/about-codex/tr/> (accessed June 3, 2025).

550 FAO. Promises and challenges of the informal food sector in developing countries. <https://www.fao.org/4/a1124e/a1124e00.pdf> (accessed June 3, 2025).

551 Animal Equality UK. The danger and cruelty of wet markets. Animal Equality UK. 2020. <https://animalequality.org.uk/act/ban-wet-markets> (accessed June 3, 2025).

552 Booker CA, Graham LO, Quigley M, et al. Congress of the United States letter to the director generals of the WHO, OIE and FAO. 2020. https://www.booker.senate.gov/imo/media/doc/04.08.20_Booker_Graham_Quigley_McCaul_Final%20sBlock.pdf (accessed May 19, 2025).

553 Naguib MM, Li R, Ling J, Grace D, Nguyen-Viet H, Lindahl JF. Live and wet markets: food access versus the risk of disease emergence. *Trends Microbiol* 2021; **29**: 573–81.

554 Vipham JL, Chaves BD, Trinetta V. Mind the gaps: how can food safety gaps be addressed in developing nations? *Anim Front* 2018; **8**: 16–25.

555 FAO. Food safety risk management: Evidence-informed policies and decisions, considering multiple interests. Rome: Food and Agriculture Organization of the United Nations, 2017. <https://openknowledge.fao.org/server/api/core/bitstreams/c3f3ae32-fd53-421f-949b-1a7326116c7f/content> (accessed June 6, 2025).

556 Argenti O, Francois S, Mouawad H. The informal food sector. Municipal support policies for operators. A briefing guide for mayors, city executive and urban planners in developing countries and countries in transition. Food Cities Collect FAO. 2003. <https://www.fao.org/3/y4312e/y4312e.pdf> (accessed June 3, 2025).

557 Chopra M, Galbraith S, Darnton-Hill I. A global response to a global problem: the epidemic of overnutrition. *Bull World Health Organ* 2002; **80**: 952–58.

558 Alexander E, Yach D, Mensah GA. Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy. *Global Health* 2011; **7**: 26.

559 Monteiro CA, Moura JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. *Obes Rev* 2013; **14** (suppl 2): 21–28.

560 Tangcharoensathien V, Chandrasiri O, Kunpeuk W, Markchang K, Pangkariya N. Addressing NCDs: Challenges from industry market promotion and interferences. *Int J Health Policy Manag* 2019; **8**: 256–60.

561 Anik AI, Rahman MM, Rahman MM, Tareque MI, Khan MN, Alam MM. Double burden of malnutrition at household level: a comparative study among Bangladesh, Nepal, Pakistan, and Myanmar. *PLoS One* 2019; **14**: e0221274.

562 Dominguez-Salas P, Alarcón P, Häslér B, et al. Nutritional characterisation of low-income households of Nairobi: socioeconomic, livestock and gender considerations and predictors of malnutrition from a cross-sectional survey. *BMC Nutr* 2016; **2**: 47.

563 UNICEF. The state of the world's children 2019. Children, food and nutrition: growing well in a changing world. New York, NY: UNICEF, 2019.

564 World Food Programme. Urban nutrition: reducing the triple burden of malnutrition. 2016 Oct p. 2. <https://documents.wfp.org/stellent/groups/public/documents/communications/wfp287654.pdf> (accessed May 19, 2025).

565 WHO. Comprehensive implementation plan on maternal, infant and young child nutrition. 2014. https://iris.who.int/bitstream/handle/10665/113048/WHO_NMH_NHD_14.1_eng.pdf?sequence=1 (accessed June 3, 2025).

566 World Obesity Federation. Obesity: missing the 2025 global targets. 2020. https://s3-eu-west-1.amazonaws.com/wof-files/970_-WOF_Missing_the_2025_Global_Targets_Report_ART.pdf (accessed June 3, 2025).

567 WHO, UNICEF. WHO/UNICEF discussion paper: the extension of the 2025 maternal, infant and young child nutrition targets to 2030. 2019 June. <https://data.unicef.org/resources/who-unicef-discussion-paper-nutrition-targets/> (accessed June 3, 2025).

568 FAO. Food Wastage Footprint - Impact on Natural Resources: Summary Report. Rome: FAO; 2013. <https://openknowledge.fao.org/server/api/core/bitstreams/1694038d-98f7-40f6-be4b-98782544b9f9/content> (accessed June 3, 2025).

569 The State of Food Security and Nutrition in the World. <https://openknowledge.fao.org/server/api/core/bitstreams/39dbc6d1-58eb-4aac-bd8a-47a8a2c07c67/content/cd1254en.html#gsc.tab=0> (accessed June 3, 2025).

570 Summary for Policymakers — Special Report on Climate Change and Land. <https://www.ipcc.ch/srcl/chapter/summary-for-policymakers/> (accessed June 3, 2025).

571 Eisen MB, Brown PO. Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO₂ emissions this century. *PLOS Clim* 2022; **1**: e0000010.

572 Hayek MN, Harwatt H, Ripple WJ, Mueller ND. The carbon opportunity cost of animal-sourced food production on land. *Nat Sustain* 2021; **4**: 21–24.

573 Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J. Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Rome: FAO, 2013. <http://www.fao.org/3/i3437e/i3437e.pdf> (accessed May 19, 2025).

574 FAO. Global Livestock Environmental Assessment Model (GLEAM). Food and Agriculture Organization of the United Nations. 2023. <https://www.fao.org/gleam/en/> (accessed June 3, 2025).

575 Feigin SV, Wiebers DO, Lueddeke G, et al. Proposed solutions to anthropogenic climate change: a systematic literature review and a new way forward. *Helyon* 2023; **9**: e20544.

576 Reddy BL, Milton HJS. The causal relationship between eating animals and viral epidemics. *Microb Physiol* 2020; **30**: 2–8.

577 Allen T, Murray KA, Zambrana-Torrelío C, et al. Global hotspots and correlates of emerging zoonotic diseases. *Nat Commun* 2017; **8**: 1124.

578 Salaheen S, Biswas D. Chapter 2 - organic farming practices: integrated culture versus monoculture. In: Biswas D, Micallef SA, eds. Safety and practice for organic food. Academic Press, 2019: 23–32.

579 Bennett AJ, Bending GD, Chandler D, Hilton S, Mills P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. *Biol Rev Camb Philos Soc* 2012; **87**: 52–71.

580 Murphy FA. A perspective on emerging zoonoses. In: The emergence of zoonotic diseases: understanding the impact on animal and human health. US: National Academies Press, 2002. <https://www.ncbi.nlm.nih.gov/books/NBK98104/> (accessed June 3, 2025).

581 Bettencourt EMV, Tilman M, Narciso V, Carvalho MLS, Henriques PDS. The livestock roles in the wellbeing of rural communities of Timor-Leste. *Rev Econ Sociol Rural* 2015; **53** (suppl 1): 63–80.

582 Chung MG, Kapsar K, Frank KA, Liu J. The spatial and temporal dynamics of global meat trade networks. *Sci Rep* 2020; **10**: 16657.

583 Chapot L, Whatford L, Compston P, et al. A global media analysis of the impact of the COVID-19 pandemic on chicken meat food systems: key vulnerabilities and opportunities for building resilience. *Sustainability* 2021; **13**: 9435.

584 Gaupp F. Extreme events in a globalized food system. *One Earth* 2020; **2**: 518–21.

585 Behnassi M, El Haiba M. Implications of the Russia–Ukraine war for global food security. *Nat Hum Behav* 2022; **6**: 754–55.

586 Epstein GA. Financialization, rentier interests, and central bank policy. Amherst: University of Massachusetts, 2002.

587 Epstein GA. Financialization and the world economy. Cheltenham: Edward Elgar Publishing, 2005

588 Clapp J, Isakson SR. Risky returns: the implications of financialization in the food system. *Dev Change* 2018; **49**: 437–60.

589 Behl N. India's farmers' protest: an inclusive vision of Indian democracy. *Am Polit Sci Rev* 2022; **116**: 1–6.

590 Jodhka SS. Farmers in India have been protesting for 6 months, have they made any progress? The Conversation, 2021. <http://theconversation.com/farmers-in-india-have-been-protesting-for-6-months-have-they-made-any-progress-161101> (accessed June 3, 2025).

591 Hilson G, Hilson A, Adu-Darko E. Chinese participation in Ghana's informal gold mining economy: drivers, implications and clarifications. *J Rural Stud* 2014; **34**: 292–303.

592 Nelson PN, Gabriel J, Filer C, et al. Oil palm and deforestation in Papua New Guinea. *Conserv Lett* 2014; **7**: 188–95.

593 Visser O, Clapp J, Isakson SR. Introduction to a symposium on global finance and the agri-food sector: risk and regulation. *J Agric Change* 2015; **15**: 541–48.

594 Feedback. Butchered the planet: the big-name financiers bankrolling livestock corporations and climate change. 2020. <https://feedbackglobal.org/wp-content/uploads/2020/07/FeedbackReport-ButcheredPlanet-Jul20-HighRes.pdf> (accessed May 19, 2025).

595 FAIRR Initiative. An industry infected. FAIRR Initiative. 2020. <https://www.fairr.org/article/industry-infected/> (accessed June 3, 2025).

596 El Bilali H, Callenius C, Strassner C, Probst L. Food and nutrition security and sustainability transitions in food systems. *Food Energy Secur* 2019; **8**: e00154.

597 Stentiford GD, Bateman IJ, Hinchliffe SJ, et al. Sustainable aquaculture through the One Health lens | Nature Food. *Nat Food* 2020; **1**: 468–74.

598 Baker P, Lacy-Nichols J, Williams O, Labonté R. The political economy of healthy and sustainable food systems: an introduction to a special issue. *Int J Health Policy Manag* 2021; **10**: 734–44.

599 De Schutter O. The political economy of food systems reform. *Eur Rev Agric Econ* 2017; **44**: 705–31.

600 Sonnino R, Marsden T, Moragues-Faus A. Relationalities and convergences in food security narratives: towards a place-based approach. *Trans Inst Br Geogr* 2016; **41**: 477–89.

601 European Commission. EAT–Lancet Commission summary report. 2020. https://knowledge4policy.ec.europa.eu/publication/eat-lancet-commission-summary-report_en (accessed June 15, 2025).

602 FAO, IFAD, UNICEF, WFP, WHO. The state of food security and nutrition in the world 2020. 2020. <https://openknowledge.fao.org/items/08c592f2-1962-4e1a-a541-695f9404b26d> (accessed May 19, 2025).

603 UN Commission on Global Governance. Our global neighborhood. 1995. <https://www.gdrc.org/u-gov/global-neighbourhood/chap1.htm> (accessed June 3, 2025).

604 Ruckert A. Global health governance after the financial crisis: making health equity matter. *Can Foreign Policy* 2013; **19**: 340–53.

605 Kickbusch I, Szabo MMC. A new governance space for health. *Glob Health Action* 2014; **7**: 23507.

606 Ottersen OP, Dasgupta J, Blouin C, et al. The political origins of health inequity: prospects for change. *Lancet* 2014; **383**: 630–67.

607 Green L, Ashton K, Bellis MA, Clemens T, Douglas M. 'Health in All Policies'—a key driver for health and well-being in a post-COVID-19 pandemic world. *Int J Environ Res Public Health* 2021; **18**: 9468.

608 Government of South Australia. WHO. Progressing the Sustainable Development Goals through Health in All Policies: case studies from around the world. Adelaide: Government of South Australia; 2017. https://cdn.who.int/media/docs/default-source/inaugural-who-partners-forum/progressing-sdg-case-studies-20178560b677-aef4dea-a6cc-459258712d41.pdf?sfvrsn=d0096b17_1&download=true (accessed June 3, 2025).

609 Kickbusch I, Gleicher D. Governance for health in the 21st century. WHO. Regional Office for Europe; 2012. <https://iris.who.int/bitstream/handle/10665/326429/9789289002745-eng.pdf?sequence=1&isAllowed=y> (accessed June 3, 2025).

610 FAO, OIE, WHO. The FAO-OIE-WHO Collaboration: Sharing responsibilities and coordinating global activities to address health risks at the animal-human-ecosystems interfaces. 2010. <https://www.woah.org/app/uploads/2021/03/final-concept-note-hanoi.pdf> (accessed May 19, 2025).

611 IACG. No time to wait: securing the future from drug-resistant infections. 2019. https://www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdf?sfvrsn=5b424d7_6 (accessed June 3, 2025).

612 FAO, OIE, WHO. International instruments on the use of antimicrobials across the human, animal and plant sectors. 2020. 60 p. <http://www.fao.org/documents/card/en/c/cb1747en/> (accessed May 19, 2025).

613 WHO, FAO, OIE. Joint Risk Assessment Operational Tool (JRA OT): an operational tool of the Tripartite Zoonoses Guide - taking a multisectoral, One Health approach: a tripartite guide to addressing zoonotic diseases in countries. 2020. <https://iris.who.int/bitstream/handle/10665/340005/9789240015142-eng.pdf?sequence=1> (accessed June 3, 2025).

614 CDC. Operationalizing "One Health": a policy perspective - taking stock and shaping an implementation roadmap. Stone Mountain, Georgia: National Center for Emerging and Zoonotic Infectious Diseases: Division of High-Consequence Pathogens and Pathology; May, 2010. https://www.woah.org/fileadmin/Home/eng/Media_Center/docs/pdf/meeting-overview.pdf (accessed May 19, 2025).

615 Ghai RR, Wallace RM, Kile JC, et al. A generalizable one health framework for the control of zoonotic diseases. *Sci Rep* 2022; **12**: 8588.

616 Habib N, Parry J, Elfving R, Dunn B. Practical actions to operationalize the One Health approach in the Asian Development Bank. Asian Development Bank; 2022 May. (ADB East Asia Working Paper Series). Report No.: 50. <https://www.adb.org/sites/default/files/publication/798866/eawp-050-practical-actions-one-health-approach-adb.pdf> (accessed June 3, 2025).

617 Mahrouz H, Redi N, Nhu Nguyen TM, Al Awaidy S, Mostafavi E, Samhouri D. One Health operational framework for action for the Eastern Mediterranean Region, focusing on zoonotic diseases. *East Mediterr Health J* 2020; **26**: 720–25.

618 One Health Commission. One Health Strategic Action Plans. One Health Commission. 2023. https://www.onehealthcommission.org/en/resources__services/one_health_strategic_action_plans/ (accessed May 19, 2025).

619 Fasina FO, Fasanmi OG, Makonnen YJ, Bebay C, Bett B, Roesel K. The one health landscape in Sub-Saharan African countries. *One Health* 2021; **13**: 100325.

620 Mwatondo A, Rahman-Shepherd A, Hollmann L, et al. A global analysis of One Health Networks and the proliferation of One Health collaborations. *Lancet* 2023; **401**: 605–16.

621 WHO. Quadripartite Memorandum of Understanding (MoU) signed for a new era of One Health collaboration. 2022. [https://www.who.int/news/item/29-04-2022-quadrupartite-memorandum-of-understanding-\(mou\)-signed-for-a-new-era-of-one-health-collaboration](https://www.who.int/news/item/29-04-2022-quadrupartite-memorandum-of-understanding-(mou)-signed-for-a-new-era-of-one-health-collaboration) (accessed June 3, 2025).

622 WHO. Tripartite and UNEP support OHHLEP's definition of "One Health". 2021. <https://www.who.int/news/item/01-12-2021-tripartite-and-unep-support-ohhlep-s-definition-of-one-health> (accessed June 3, 2025).

623 Federal Ministry for Economic Cooperation and Development. Initiative area One Health in development cooperation. 2021. (BMZ Strategies). <https://health.bmz.de/studies/initiative-area-one-health-in-development-cooperation/> (accessed May 19, 2025).

624 One Health Commission. OH Antimicrobial Resistance Strategic Action Plans. One Health Commission. 2023. https://www.onehealthcommission.org/en/resources__services/one_health_strategic_action_plans/oh_antimicrobial_resistance_strategic_action_plans/ (accessed May 19, 2025).

625 WHO. Political declaration of the third high-level meeting of the General Assembly on the prevention and control of non-communicable diseases. 2021 p. 60. Report No.: EB148/7. https://apps.who.int/gb/ebwha/pdf_files/EB148/B148_7-en.pdf (accessed May 19, 2025).

626 WHO. Follow-up to the political declaration of the third high-level meeting of the General Assembly on the prevention and control of non-communicable diseases. WHO; 2022 p. 5. Report No.: A75/10 Add.5. https://apps.who.int/gb/ebwha/pdf_files/WHA75/A75_10Add5-en.pdf (accessed June 3, 2025).

627 Lee K, Brumme ZL. Operationalizing the One Health approach: the global governance challenges. *Health Policy Plan* 2013; **28**: 778–85.

628 World Bank Group. One Health approach can prevent the next pandemic. The World Bank. 2022. <https://www.worldbank.org/en/news/feature/2022/10/24/one-health-approach-can-prevent-the-next-pandemic> (accessed June 3, 2025).

629 IPBES. Nexus assessment: thematic assessment of the interlinkages among biodiversity, water, food and health. 2019. <https://ipbes.net/node/35931> (accessed June 3, 2025).

630 IPBES. Transformative change assessment: thematic assessment of the underlying causes of biodiversity loss, determinants of transformative change and options for achieving the 2050 vision for biodiversity. IPBES. 2019. <https://ipbes.net/node/35932> (accessed June 3, 2025).

631 Environment UN. Making peace with nature | UNEP - UN Environment Programme. 2021. <https://wedocs.unep.org/xmlui/bitstream/handle/20.500.11822/34948/MPN.pdf> (accessed June 3, 2025).

632 Fröhlich J, Knieling J. Conceptualising climate change governance. In: Knieling J, Leal Filho W, eds. Climate change governance. Berlin: Springer; 2013: 9–26.

633 UN. About the agreement. Agreement on marine biodiversity of areas beyond national jurisdiction. <https://www.un.org/bbnjagreement/en/bbnj-agreement/about-agreement> (accessed June 3, 2025).

634 Hitziger M, Esposito R, Canali M, Aragrande M, Häsliger B, Rüegg SR. Knowledge integration in One Health policy formulation, implementation and evaluation. *Bull World Health Organ* 2018; **96**: 211–18.

635 Kamani TM, Kazwala R, Mfinanga S, et al. One Health: a concept led by Africa, with global benefits. *Vet Rec* 2015; **176**: 496–97.

636 Otu A, Effa E, Meseko C, et al. Africa needs to prioritize One Health approaches that focus on the environment, animal health and human health. *Nat Med* 2021; **27**: 943–46.

637 Okello AL, Bardosh K, Smith J, Welburn SC. One Health: past successes and future challenges in three African contexts. *PLoS Negl Trop Dis* 2014; **8**: e2884.

638 McKenzie JS, Dahal R, Kakkar M, et al. One Health research and training and government support for One Health in south Asia. *Infect Ecol Epidemiol* 2016; **6**: 33842.

639 Lokossou VK, Atama NC, Nzietchueng S, et al. Operationalizing the ECOWAS regional one health coordination mechanism (2016–2019): Scoping review on progress, challenges and way forward. *One Health* 2021; **13**: 100291.

640 Griffith EF, Kipkemoi JR, Robbins AH, et al. A One Health framework for integrated service delivery in Turkana County, Kenya. *Pastoralism* 2020; **10**: 7.

641 FAO. Identifying One Health priorities in Asia and the pacific region: thirty-sixth session of the FAO Regional Conference for Asia and the Pacific (APRCC36). In Bangkok, Thailand: FAO; 2022. p 16. <https://openknowledge.fao.org/server/api/core/bitstreams/af84b1cc-28ca-421d-b8be-9a7d688b86b3/content> (accessed June 3, 2025).

642 Spencer J, McRobie E, Dar O, et al. Is the current surge in political and financial attention to One Health solidifying or splintering the movement? *BMJ Glob Health* 2019; **4**: e001102.

643 Ruckert A, Gonçalo das Neves C, Amuasi J, et al. One health as a pillar for a transformative pandemic treaty. 2021. <https://www.graduateinstitute.ch/sites/internet/files/2021-11/policybrief-onehealth-v3.pdf> (accessed May 19, 2025).

644 Think Global Health Council on Foreign Relations. Why Pandemic Agreement negotiations failed to land. 2024. <https://www.thinkglobalhealth.org/article/why-pandemic-agreement-negotiations-failed-land> (accessed June 3, 2025).

645 Scott D. Even as bird flu looms, the world is unlearning COVID's lessons. Vox, 2024. <https://www.vox.com/24151110/bird-flu-h5n1-pandemic-treaty-prevention-response> (accessed June 3, 2025).

646 PREZODE. PREZODE: Preventing zoonotic disease emergence. PREZODE. 2023. <https://prezode.org/> (accessed May 19, 2025).

647 WHO. Monitoring the building blocks of health systems: a handbook of indicators and their measurement strategies. Geneva: World Health Organization, 2010.

648 blog.weitzenerger.de. Growth. Building jobs and prosperity in developing countries. April 26, 2008. <https://weitzenerger.wordpress.com/2008/04/26/growth-building-jobs-and-prosperity-in-developing-countries/> (accessed June 6, 2025).

649 Kubiszewski I, Costanza R, Franco C, et al. Beyond GDP: measuring and achieving global genuine progress. *Ecol Econ* 2013; **93**: 57–68.

650 Kasman A, Duman YS. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: a panel data analysis. *Econ Model* 2015; **44**: 97–103.

651 Cheng Y, Awan U, Ahmad S, Tan Z. How do technological innovation and fiscal decentralization affect the environment? A story of the fourth industrial revolution and sustainable growth. *Technol Forecast Soc Change* 2021; **162**: 120398.

652 Sun H, Tariq G, Haris M, Mohsin M. Evaluating the environmental effects of economic openness: evidence from SAARC countries. *Environ Sci Pollut Res Int* 2019; **26**: 24542–51.

653 European Commission. A European green deal. Priorities 2019 - 2024. 2019. https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed June 3, 2025).

654 OECD. Towards green growth. 2011. https://www.oecd.org/content/dam/oecd/en/publications/reports/2011/05/towards-green-growth_g1g1342a/9789264111318-en.pdf (accessed June 3, 2025).

655 UNEP. Towards a green economy: pathways to sustainable development and poverty eradication. 2011. https://sustainabledevelopment.un.org/content/documents/126GER_synthesis_en.pdf (accessed June 3, 2025).

656 World Bank. Inclusive green growth. The World Bank; 2012. <https://documents1.worldbank.org/curated/en/368361468313515918/pdf/691250PUBP0Publ067902B09780821395516.pdf> (accessed June 6, 2025).

657 Hickel J, Kallis G. Is green growth possible? *New Polit Econ* 2020; **25**: 469–86.

658 Parrique T, Barth J, Briens F, Kerschner C, Kraus-Polk A. Decoupling debunked – evidence and arguments against green growth as a sole strategy for sustainability. European Environmental Bureau; 2019. <https://eeb.org/wp-content/uploads/2019/07/Decoupling-Decbunked.pdf> (accessed June 3, 2025).

659 Ward JD, Sutton PC, Werner AD, Costanza R, Mohr SH, Simmons CT. Is decoupling GDP growth from environmental impact possible? *PLoS One* 2016; **11**: e0164733.

660 Daly HE. Ecological economics and sustainable development, selected essays of Herman Daly. Edward Elgar Publishing, 2007. https://library.uniteddiversity.coop/Measuring_Progress_and_Eco_Footprinting/Ecological_Economics_and_Sustainable_Development-Selected_Essays_of_Herman_Daly.pdf (accessed June 3, 2025).

661 Turner G. “Is global collapse imminent?”. Melbourne Sustainable Society Institute, The University of Melbourne; 2014. <http://pinguet.free.fr/turner814.pdf> (accessed June 3, 2025).

662 World Bank. The cost of air pollution: strengthening the economic case for action. Washington, DC: World Bank; 2016. <https://openknowledge.worldbank.org/server/api/core/bitstreams/baeee48-cd09-5539-ac37-ba2e3e369141/content> (accessed June 3, 2025).

663 Dang HAH, Serajuddin U. Tracking the Sustainable Development Goals: emerging measurement challenges and further reflections. *World Dev* 2020; **127**: 104570.

664 Hickel J, Kallis G, Jackson T, et al. Degrowth can work — here's how science can help. *Nature* 2022; **612**: 400–03.

665 Raworth K. Doughnut economics: seven ways to think like a 21st-century economist. Chelsea Green Publishing, 2017.

666 Raworth K. A doughnut for the Anthropocene: humanity's compass in the 21st century. *Lancet Planet Health* 2017; **1**: e48–49.

667 Stahel WR. The circular economy. *Nature* 2016; **531**: 435–38.

668 Korhonen J, Honkasalo A, Seppälä J. Circular economy: the concept and its limitations. *Ecol Econ* 2018; **143**: 37–46.

669 Kickbusch I, Demaio S, Grimes A, Williams C, de Leeuw E, Herriot M. The wellbeing economy is within reach—let's grasp it for better health. *Health Promot Int* 2022; **37**: daac055.

670 Hough-Stewart L, Trebeck K, Sommer C, Wallis S. What is a wellbeing economy? Different ways to understand the vision of an economy that serves people and planet. Wellbeing Economy Alliance. WEAll Ideas: Little Summaries of Big Issues; 2019. <https://weall.org/wp-content/uploads/2019/12/A-WE-Is -WEAll-Ideas-Little-Summaries-of-Big-Issues-4-Dec-2019.pdf> (accessed May 19, 2025).

671 WHO. The WHO Council on the Economics of Health for All - manifesto. 2021. https://cdn.who.int/media/docs/default-source/council-on-the-economics-of-health-for-all/who-council -eh4a-manifesto_09112021.pdf?sfvrsn=788671_5 (accessed June 3, 2025).

672 World Bank Group. Establishment of a financial intermediary fund for pandemic prevention, preparedness and response. Washington, DC: World Bank; 2022. Report no. 172796. <https://documents1.worldbank.org/curated/en/733191656685369495/pdf/Establishment-of-a-Financial-Intermediary-Fund-for-Pandemic-Prevention-Preparedness-and-Response.pdf> (accessed June 3, 2025).

673 WHO. The Quadripartite Organizations established the Technical Group on Integrated Surveillance on Antimicrobial use and resistance. World Health Organization. 2023. <https://www.who.int/news/item/26-01-2023-the-quadrupartite-organizations-established-the-technical-group-on-integrated-surveillance-on-antimicrobial-use-and-resistance> (accessed June 3, 2025).

674 World Bank. Safeguarding animal, human and ecosystem health: One Health at the World Bank. The World Bank. 2021. <https://www.worldbank.org/en/topic/agriculture/brief/safeguarding-animal-human-and-ecosystem-health-one-health-at-the-world-bank> (accessed June 3, 2025).

675 Ketkar S, Ratha D, eds. Innovative financing for development. Washington, DC: The International Bank for Reconstruction and Development and The World Bank; 2009. <https://openknowledge.worldbank.org/server/api/core/bitstreams/ca507ff6-fac2-5914-9929-d5aeb79426b8/content> (accessed June 3, 2025).

676 Welburn SC, Bardosh KL, Coleman PG. Novel financing model for neglected tropical diseases: development impact bonds applied to sleeping sickness and rabies control. *PLoS Negl Trop Dis* 2016; **10**: e0005000.

677 The World Bank Group. Global Financing Facility. 2022. <https://www.globalfinancingfacility.org/> (accessed June 3, 2025).

678 Salisbury NA, Asiimwe G, Waiswa P, Latimer A. Operationalising the Global Financing Facility (GFF) model: the devil is in the detail. *BMJ Glob Health* 2019; **4**: e001369.

679 World Bank Group. The why and how of blended finance. 2021. <https://documents1.worldbank.org/curated/en/856201613568586386/pdf/The-Why-and-How-of-Blended-Finance.pdf> (accessed June 6, 2025).

680 Hatashima H, Demberel U. What is blended finance, and how can it help deliver successful high-impact, high-risk projects? World Bank Group. 2020. <https://ieg.worldbankgroup.org/blog/what-blended-finance-and-how-can-it-help-deliver-successful-high-impact-high-risk-projects> (accessed June 3, 2025).

681 OECD. OECD DAC blended finance principles for unlocking commercial finance for the Sustainable Development Goals. 2018. https://www.oecd.org/content/dam/oecd/en/publications/reports/2018/12/oecd-dac-blended-finance-principles_898d3549/dc66bd9c-en.pdf (accessed June 3, 2025).

682 Hughes-McLure S, Mawdsley E. Innovative finance for development? Vaccine bonds and the hidden costs of financialization. *Econ Geogr* 2022; **98**: 145–69.

683 Sklair J, Gilbert P. Giving as “de-risking”: philanthropy, impact investment and the pandemic response. *Public Anthropol*. 2022; **4**: 51–77.

684 Pereira J. Blended finance: what it is, how it works and how it is used. Oxfam International; 2017. <https://oxfamlibrary.openrepository.com/bitstream/handle/10546/620186/rr-blended-finance-130217-en.pdf?jsessionid=53D18BDE0B91BB93FE0357BD2C3DF1DC?sequence=1> (accessed June 3, 2025).

685 Stuckler D, Basu S, McKee M. Global health philanthropy and institutional relationships: how should conflicts of interest be addressed? *PLoS Med* 2011; **8**: e1001020.

686 Blunt GD. The Gates Foundation, global health and domination: a Republican critique of transnational philanthropy. *Int Aff* 2022; **98**: 2039–56.

687 Youde J. Private actors, global health and learning the lessons of history. *Med Confl Surviv* 2016; **32**: 203–20.

688 Bermudez GF, Prah JJ. Examining power dynamics in global health governance using topic modeling and network analysis of Twitter data. *BMJ Open* 2022; **12**: e054470.

689 World Bank. People, Pathogens and Our Planet. Volume one: towards a One Health approach for controlling zoonotic diseases. 2010. Report No.: 50833-GLB. <https://openknowledge.worldbank.org/server/api/core/bitstreams/9c026656-f5fe-50a5-9782-d8edb5be1c8/content> (accessed June 3, 2025).

690 Berthe FCJ, Bali SR, Batmanian GJ. Putting pandemics behind us: investing in One Health to reduce risks of emerging infectious diseases. Washington, DC: World Bank Group; 2022. Report No.: 177299. <https://documents1.worldbank.org/curated/en/099530010212241754/pdf/P17840200ca7f098091b7014001a08952e.pdf> (accessed June 3, 2025).

691 World Bank Group. What Is IDA? IDA: International Development Association - World Bank Group. 2022. <https://ida.worldbank.org/en/what-is-ida> (accessed June 3, 2025).

692 World Bank. Financial intermediary funds (FIFs). The World Bank, 2023. <https://fiftrustee.worldbank.org/en/about/unit/dfi/fiftrustee/overview> (accessed June 3, 2025).

693 The Pandemic Fund. We are still unprepared for the next pandemic. But we can fix this. The Pandemic Fund, 2025. <https://www.thepandemicfund.org/news/blog/we-are-still-unprepared-next-pandemic-we-can-fix> (accessed May 25, 2025).

694 Al-Khalidi M. Research Fairness Initiative opens a new era for equitable and impactful research collaborations. *Eur J Public Health* 2020; **30** (suppl 5): cka165.802.

695 Yang J, Wang L, Sun Z, Zhu F, Guo Y, Shen Y. Impact of monetary policy uncertainty on R&D investment smoothing behavior of pharmaceutical manufacturing enterprises: empirical research based on a threshold regression model. *Int J Environ Res Public Health* 2021; **18**: 11560.

696 Tömöri G, Bács Z, Felföldi J, Orbán I. Impact of pharmaceutical R&D activity on financial flexibility and bargaining power. *Economies*. 2022; **10**: 1–19.

697 Billette de Villemeur E, Scannell JW, Versaevel B. Biopharmaceutical R&D outsourcing: short-term gain for long-term pain? *Drug Discov Today* 2022; **27**: 10333.

698 Dolgin E. The tangled history of mRNA vaccines. *Nature* 2021; **597**: 318–24.

699 Ball P. The lightning-fast quest for COVID vaccines — and what it means for other diseases. *Nature* 2021; **589**: 16–18.

700 Conti RM, David FS. Rebalancing high prescription drug prices with innovation incentives. 2019. <https://www.healthaffairs.org/do/10.1377/forefront.20190626.569971/full/> (accessed June 3, 2023).

701 Viergever RF. The mismatch between the health research and development (R&D) that is needed and the R&D that is undertaken: an overview of the problem, the causes, and solutions. *Glob Health Action* 2013; **6**: 22450.

702 Mazzucato M. Mission economy: a moonshot guide to changing capitalism. Allen Lane, 2021.

703 Hoffmann A. How business can act as a force for good. World Economic Forum. 2021. <https://www.weforum.org/agenda/2021/01/davos-agenda-how-business-can-act-as-a-force-for-good/> (accessed June 3, 2025).

704 Kindig DA, Isham GJ, Siemering KQ. The business role in improving health: beyond social responsibility. Aug 8, 2013. <https://nam.edu/wp-content/uploads/2015/06/TheBusinessRole.pdf> (accessed May 19, 2025).

705 Iacobucci G. “No brainer” for businesses to tackle health inequalities, says Michael Marmot. *BMJ* 2022; **377**: 0878.

706 Institute of Medicine. Business engagement in building healthy communities: workshop summary. Washington, DC: The National Academies Press, 2015. <https://nap.nationalacademies.org/read/19003/chapter/1> (accessed June 3, 2025).

707 Mondal S, Mitra P. The role of emerging technologies to fight against COVID-19 pandemic: an exploratory review. *Trans Indian Natl Acad Eng* 2022; **7**: 157–74.

708 Harle J. We won't get to a more equitable knowledge ecosystem if we don't have more equitable ways to assess research and knowledge. London School of Economics: Impact of Social Sciences. 2021. <https://blogs.lse.ac.uk/impactofsocialsciences/2021/08/05/we-wont-get-to-a-more-equitable-knowledge-ecosystem-if-we-don-t-have-more-equitable-ways-to-assess-research-and-knowledge/> (accessed June 3, 2025).

709 Jones TR, Burrell S. Present in class yet absent in science: the individual and societal impact of inequitable science instruction and challenge to improve science instruction. *Sci Educ* 2022; **106**: 1032–53.

710 National Institute of Environmental Health Sciences. Concept clearance: breast cancer and the environment research program. 2014. https://www.niehs.nih.gov/sites/default/files/about/boards/naehsc/agenda/may2014/concept_clearance_breast_cancer_the_environment_508.pdf (accessed June 6, 2025).

711 Harrison S, Baker MG, Benschop J, et al. One Health Aotearoa: a transdisciplinary initiative to improve human, animal and environmental health in New Zealand. *One Health Outlook* 2020; **2**: 4.

712 Machalaba C, Raufman J, Anyamba A, et al. Applying a One Health approach in global health and medicine: enhancing involvement of medical schools and global health centers. *Ann Glob Health* 2021; **87**: 30.

713 SEAOHUN. SEAOHUN: Southeast Asia One Health University Network. 2021. <https://www.seahun.org> (accessed June 3, 2025).

714 AFROHUN. AFROHUN: Advancing One Health. 2021. <https://afrohun.org/> (accessed June 3, 2025).

715 Africa One Health Network. The Africa One Health Network. Africa One Health Network. 2023. <https://afohnet.org/> (accessed June 3, 2025).

716 Siegenfeld AF, Bar-Yam Y. An Introduction to complex systems science and its applications. *Complexity* 2020; **2020**: e6105872.

717 Sturmburg JP. Health and disease are dynamic complex-adaptive states: implications for practice and research. *Front Psychiatry* 2021; **12**: 595124.

718 Funtowicz S, Ravetz J. Chapter 2 - post-normal science: how does it resonate with the world of today? In: Science for policy handbook. Elsevier, 2020: 14–18.

719 Government Office for Science. The Futures Toolkit - Tools for Futures Thinking and Foresight Across UK Government. 2017. <https://www.gov.uk/government/publications/futures-toolkit-for-policy-makers-and-analysts>

720 Ramanathan T, Hulkower R, Holbrook J, Penn M. Legal epidemiology: the science of law. *J Law Med Ethics* 2017; **45**: 69–72.

721 Henley P, Igihozo G, Wotton L. One Health approaches require community engagement, education, and international collaborations—a lesson from Rwanda. *Nat Med* 2021; **27**: 947–48.

722 Berrian AM, Smith MH, van Rooyen J, et al. A community-based One Health education program for disease risk mitigation at the human-animal interface. *One Health* 2018; **5**: 9–20.

723 Riley T, Anderson NE, Lovett R, Meredith A, Cumming B, Thandrayen J. One Health in Indigenous communities: a critical review of the evidence. *Int J Environ Res Public Health* 2021; **18**: 11303.

724 Laing G, Duffy E, Anderson N, et al. Advancing One Health: Updated core competencies. CABI One Health. 2023. <http://www.cabidigitallibrary.org/doi/10.1079/cabionehealth.2023.0002> (accessed June 3, 2025).

725 Nieder J, Nayna Schwerdtle P, Sauerborn R, Bartelt S. Massive Open Online Courses for health worker education in low- and middle-income countries: a scoping review. *Front Public Health* 2022; **10**: 891987.

726 University of Basel. One Health: Connecting humans, animals and the environment. FutureLearn, 2023. <https://www.futurelearn.com/courses/one-health> (accessed June 3, 2025).

727 Thomson D. One Health lessons. 2022. <http://www.onehealthlessons.com/> (accessed June 3, 2025).

728 Frenk J, Chen L, Bhutta ZA, et al. Health professionals for a new century: transforming education to strengthen health systems in an interdependent world. *Lancet* 2010; **376**: 1923–58.

729 Blankart CR, De Gani SM, Crimlisk H, Desmedt M, Bauer B, Doyle G. Health literacy, governance and systems leadership contribute to the implementation of the One Health approach: a virtuous circle. *Health Policy* 2024; **143**: 105042.

730 Fontaine G, Lavallée A, Maheu-Cadotte MA, Bouix-Picasso J, Bourbonnais A. Health science communication strategies used by researchers with the public in the digital and social media ecosystem: a systematic scoping review protocol. *BMJ Open* 2018; **8**: e019833.

731 David YBB, Garty ES, Baram-Tsabari A. Can scientists fill the science journalism void? Online public engagement with science stories authored by scientists. *PLoS One* 2020; 15: e0222250.

732 Valencia MC. Vientos Alisios: integrating traditional knowledge into science journalism. DW Akademie. 2022. <https://www.dw.com/en/vientos-alisios-integrating-traditional-knowledge-into-science-journalism/a-63407319> (accessed June 3, 2025).

733 Ruiz IB, Beseket U. Bridging the gap: sharing scientific know-how and indigenous knowledge to counter the pandemic. DW Akademie. 2022. <https://akademie.dw.com/en/bridging-the-gap-sharing-scientific-know-how-and-indigenous-knowledge-to-counter-the-pandemic/a-60395292> (accessed June 3, 2025).

734 Nature. Science journalism can be evidence-based, compelling — and wrong. *Nature* 2017; 543: 150.

735 Livingstone-Peters S. A journalist's guide to covering and implementing the One Health approach in reporting. Earth Journalism Network, 2022. <https://earthjournalism.net/resources/a-journalists-guide-to-covering-and-implementing-the-one-health-approach-in-reporting> (accessed June 3, 2025).

736 WHO. A guide to implementing the One Health Joint Plan of Action at national level. <https://www.who.int/publications/item/9789240082069> (accessed June 3, 2025).

737 World Organisation for Animal Health. WOAH assumes chair of Quadripartite Secretariat, outlining vision for One Health collaboration. March 6, 2024. <https://www.woah.org/en/woah-assumes-chair-of-quadrupartite-secretariat-outlining-vision-for-one-health-collaboration/> (accessed June 3, 2025).

738 WHO. One Health theory of change. https://cdn.who.int/media/docs/default-source/one-health/ohhlep/ohhlep-one-health-theory-of-change.pdf?sfvrsn=f0a46f49_6&download=true (accessed June 3, 2025).

Copyright © 2025 Elsevier Ltd. All rights reserved, including those for text and data mining, AI training, and similar technologies.